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ABSTRACT 

This study integrates complementary spectral and spatial infor-

mation to elevate deep learning based time-frequency masking and 

acoustic beamforming. Coherence and directional features are 

designed as additional input features for deep neural network train-

ing to remove diffuse noise and other directional interferences 

pervasive in real-world recordings. The diffuse and directional 

features are designed to be relatively invariant to the underlying 

target direction, number of microphones and microphone geome-

try. The estimated masks are then utilized to compute steering 

vectors and spatial covariance matrices for beamforming and ro-

bust ASR. Experiments on the CHiME-4 dataset demonstrate the 

effectiveness of the proposed approach.  

Index Terms—beamforming, time-frequency masking, recur-

rent neural networks, robust ASR, CHiME-4 

1. INTRODUCTION 

Riding on the tide of deep learning, monaural (single-channel) 

speech separation and enhancement have made dramatic advance 

in recent years [1]. It has been suggested in many studies that deep 

learning based time-frequency (T-F) masking is capable of accu-

rately determining speech or noise dominance at each T-F unit. 

Such masking resulted in, for the first time, substantial speech 

intelligibility improvements for hearing-impaired listeners [2], [3]. 

In the recent CHiME-3 and 4 challenges [4], [5], deep learning 

based T-F masking has been prominently employed for acoustic 

beamforming and robust ASR. The key idea is to use estimated T-

F masks produced by deep neural networks (DNNs) to compute the 

speech and noise covariance matrices [6], [7] or steering vectors 

[8] that are necessary for accurate beamforming. Remarkable im-

provements in terms of robust ASR performance have been ob-

served over conventional beamforming techniques [5], which typi-

cally use voice activity detection for covariance matrix estimation 

and direction of arrival estimation for steering vector computation.  

In previous studies [6], [7], [8], [9], DNNs rely only on single-

channel spectral information to estimate one T-F mask from every 

microphone signal. The independently estimated masks are then 

combined into a single mask, which is used as weights to compute 

spatial covariance matrices for beamforming. An advantage of 

using only single-channel information for T-F masking is that the 

DNN model trained this way is applicable regardless of the number 

of microphones and microphone geometry.  

Different from these studies, we incorporate spatial features as 

extra inputs for model training in order to complement the spectral 

information for more accurate mask estimation. Through pooling 

spatial features over microphone pairs, the applicability of the 

proposed approach is also not impacted by the number of micro-

phones and microphone geometry. 

A key observation motivating our study is that a real-world au-

ditory scene is usually comprised of one directional target speaker, 

a number of directional interference sources, and diffuse noise or 

room reverberation coming from many various directions. To dis-

tinguish the target directional source from the other directional 

sources, robust speaker localization is needed to determine the 

direction that contains the target speech. If the target direction is 

known, directional features indicating whether the signal at each T-

F unit is from that direction can be utilized to extract the target 

speech from that direction, and filter out the noise and reverbera-

tion from other directions. In addition, diffuse noises and reflec-

tions caused by room reverberation reach microphones from vari-

ous directions. This property can be exploited to derive interchan-

nel coherence based features to indicate whether a T-F unit is dom-

inated by a directional source. We emphasize that spectral infor-

mation is still indispensable to suppressing noise or reverberation 

coming from directions around the target direction. To take all 

these considerations into account, we simply encode them as dis-

criminative input features for mask estimation. This way, comple-

mentary spectral and spatial information can be utilized to boost 

speech separation. 

There are previous efforts employing directional features for 

DNN based mask estimation. Most of the earlier studies assume 

that the target speech comes from a fixed direction, typically the 

front direction. In [10], interaural time differences (ITD), interaural 

level differences (ILD) and entire cross-correlation coefficients are 

used as primary features for sub-band ideal binary mask estimation 

in the cochleagram domain. Subsequently, Zhang and Wang [11] 

propose to combine ITD, ILD, and spectral features derived from a 

fixed beamformer for mask estimation. In [12], Araki et al. use 

ILD and interchannel phase differences (IPD) for de-noising auto-

encoder training. Although these approaches show good perfor-

mance when the target is in the front, they would likely not per-

form well when the target speech is from other directions. Other 

studies perform single-channel post-filtering or spatial filtering on 

beamforming outputs for further noise reduction [13], [14], [15]. 

For coherence-based features, previous attempts [16], [17], [18] in 

robust ASR are mainly focused on using them as post-filters for 

beamforming. Different from the previous studies, we incorporate 

spatial and spectral features as extra input for DNN based mask 

estimation. Doing it this way, we find that DNN can exploit the 

complementary nature of spectral and spatial information, leading 

to better mask estimation and subsequent covariance matrices es-

timation. This results in better beamforming and robust ASR per-

formance. 

2. SYSTEM DESCRIPTION 

We first review the beamforming techniques based on T-F masking 

and DNNs, and then present two proposed spatial features for bet-

ter mask estimation. The diffuse feature is designed to suppress 

diffuse noise sources, and the directional feature is designed to 

suppress interference sources not coming from the estimated target 

direction. We discuss mask estimation in Section 2.4. An example 
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of the diffuse and directional feature is shown in Fig. 1. As can be 

seen from Fig. 1.(c) and 1.(d), they are both very discriminative to 

the IRM depicted in Fig. 1.(b). 

 

2.1. MVDR Beamforming based on T-F Masking 

 

Suppose that there is no or little room reverberation, the physical 

model can be modeled in the following way in the STFT domain.  

 (   )   ( ) (   )   (   ) (1) 

where  (   ) represents the STFT value of the sound source signal 

at time   and frequency  , and  (   ),  ( ), and  (   ) stand for 

the STFT vector of the observed noisy signal, acoustic transfer 

function, and received noise. 

Recent studies suggest that the spatial covariance matrices that 

are critical for beamforming [6], [19], [8], [20] can be accurately 

estimated using DNN based T-F masking. The key idea is that 

DNNs are capable of accurately determining the speech and noise 

dominance at each T-F unit, and therefore speech covariance ma-

trices can be estimated from speech-dominant T-F regions, and 

noise covariance matrices from noise-dominant T-F regions. Re-

markable improvement has been observed over conventional 

beamforming methods, which are commonly based on direction of 

arrival estimation and voice activity detection [21].  

Following [6], [8], the speech and noise covariance matrices in 

our study are estimated in the following way. 

 ̂ ( )  
∑  (   ) (   )  (   ) 

 

∑  (   ) 
 (2) 

 ̂ ( )  
∑  (   ) (   ) (   ) 

 

∑  (   ) 
 (3) 

where ( )  represents conjugate transpose, and  (   ) and  (   ) 

are the weights denoting the importance of each T-F unit for the 

computation of the speech and noise covariance matrices. They are 

calculated using the products of multiple estimated masks.  

 (   )  ∏  ̂ (   )
 

   
 (4) 

 (   )  ∏ (   ̂ (   ))
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where   represents the number of microphones and  ̂ (   ) de-

notes the estimated speech portion within each T-F unit using deep 

learning. Eq. (5) means that only the T-F units strongly dominant 

by target speech across all the microphone signals would be used 

to compute the speech covariance matrix. The noise covariance 

matrix is computed in a similar way, where we use one minus the 

speech mask to obtain the noise mask.  

The steering vector at each frequency,  ̂( ), is then estimated 

as the principal eigenvector of  ̂ ( ) [19]. The rationale is that 

 ̂ ( ) would be close to a rank-one matrix if it is well estimated, 

as the target speech is from a directional source. With the estimat-

ed  ̂ ( ) and  ̂( ), an MVDR beamformer is constructed: 

 ̂( )  
 ̂ ( )   ̂( )

 ̂( )  ̂ ( )   ̂( )
 (6) 

and the enhancement result is obtained using 

 ̂(   )   ̂( )  (   ) (7) 

Log Mel filterbank feature is then extracted from  ̂(   ) and di-

rectly fed into backend acoustic models for decoding. 

 

2.2. Magnitude Squared Coherence 

 

If a T-F unit is dominated by directional target speech, it would be 

coherent. Similarly, for a T-F unit dominated by diffuse noises or 

room reverberations, it would be non-coherent. This coherence 

property can be utilized to design spatial features that can differen-

tiate directional and non-directional sources. Our study employs 

the magnitude squared coherence (MSC) [22] as additional fea-

tures for DNN based T-F masking. 

To compute the MSC features, we first calculate the spatial co-

variance matrix of the noisy speech  ̂ (   ) as 

 ̂ (   )  
 

    
∑  (    ) (    ) 

   

      
 (8) 

where  (=1 in this study) is the half-window length. Then we 

calculate the inter-channel coherence (ICC) between microphone 

signal   and   using 

   (       )  
 ̂ (       )

√ ̂ (       )√ ̂ (       )

 
(9) 

Finally, we pool over the ICCs of all the microphone pairs to ob-

tain the MSC features: 

   (   )  
 

 
∑ ∑ |   (       )|

 

     

 

   
 (10) 

where    (   )  ⁄  is the total number of microphone pairs 

and | | extracts the magnitude. Note that the pooling operation here 

is a straightforward way to combine multiple microphone signals, 

and would significantly improve the quality of the MSC features. 

Intuitively, if a T-F unit is strongly dominated by a directional 

source across all the microphone channels, the |   (       )| 
would be approximately equal to one. In contrast, if the T-F unit is 

strongly dominated by diffuse noises or room reverberations, the 

|   (       )|  would be similar to a sinc function [21], which 

would become close to zero in high-frequency bands or when the 

microphone distance is large. An example is depicted in Fig. 1.(c). 

In low frequencies, the MSC features is not good enough, while 

very discriminative to the IRM in high frequencies. 

In our study, we use the MSC features as extra input to our 

neural networks for mask estimation. It should be emphasized that 

the noise could also come from a directional source. Therefore it is 

beneficial to combine the MSC features with spectral features and 

the later introduced directional features for mask estimation. Note 

that one nice thing about the MSC feature is that it can be derived 

from noisy signals directly. 

There are recent studies employing various coherence features 

for robust ASR. In [16], [17], [18], coherence based features are 

directly formulated as a post-filter to an MVDR beamformer for 

further noise reduction. In contrast, our study utilizes the MSC 

 
Fig. 1. Illustration of the spectral and spatial features using a simulated utterance 

(029_029O0306_CAF, first 4.0s) in the CHiME-4 dataset. (a) and (b) are obtained 

using its first channel, and (c) and (d) are computed using all the six microphone 

signals. In (d), the ideal ratio mask is used to derive the directional features. 
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feature for learning based time-frequency masking. This approach 

can leverage the representational power of DNN to improve mask 

estimation, and therefore benefit later beamforming. 

 

2.3. Direction-Invariant Directional Features 

 

Suppose that the true time delay between two microphone signals 

is known in advance, the observed phase difference at each T-F 

unit should be aligned with the time delay if the T-F unit is speech 

dominant. Based on this observation, the difference between the 

observed phase difference and the hypothesized phase difference 

would be indicative about whether the T-F unit is dominated by the 

speech from the hypothesized direction, or noises and inferences 

from the other directions [14], [17]. We use the following equation 

to derive the directional features for model training. 

  (   )  
 

 
∑ ∑    (   (   )     (   )  

   

 
   ̂   )

 

     

 

   
 (11) 

where    (   )     (   ) is the observed phase difference be-

tween microphone signal   and   at a specific time   and frequency 

 , and 
   

 
   ̂    is the hypothesized phase difference given the 

estimated time delay   ̂    in seconds. The   -periodic cosine oper-

ation can properly deal with potential phase-wrapping effects. If 

the time delay  ̂    is accurately estimated, the resulting feature 

would be close to one for speech dominant T-F units, while much 

smaller than one for noise-dominant T-F units. When there are 

more than two microphones (   ), we simply pool all the micro-

phone pairs together to get the final feature.  

Although recent studies suggested that time delay of arrival 

(TDOA) can be robustly estimated using time-frequency masking 

[23], our studies does not explicitly estimate TDOAs. Instead, we 

use the estimated steering vector from  ̂ ( ) to derive the spatial 

features, as the steering vector itself contains all the information 

regarding time delays and gain differences [21]. This strategy re-

moves the need for a separate sound localization module and thus 

makes the system more simplified. In addition, it avoids the linear 

phase and planar wave assumption, which may not hold in prac-

tice. The spatial feature is computed as follows: 

  (   )  
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 (12) 

where   ̂ ( ) is the phase term extracted from the estimated steer-

ing vector, and therefore   ̂ ( )    ̂ ( ) represents the estimated 

phase difference at the frequency   of microphone signal   and  . 
Eq. (12) measures whether the signal is from the estimated loca-

tion. By using the spatial features for DNN training, we could ex-

tract the signal out from the estimated target direction. 

There are previous efforts applying directional features for 

DNN training. Their directional features however are mainly de-

signed for fixed target directions, and therefore are not invariant to 

target directions. In [12], the target speaker is assumed to be right 

in the front, so the phase difference for T-F units dominated by the 

target speech should be close to zero and     (   (   )     (   )) 

is directly used as the features to build an auto-encoder based 

speech enhancement system. Different from these studies, the fea-

tures derived in this study is location-invariant. The invariance is 

achieved by subtracting the estimated phase difference from the 

observed phase difference so that a high value in the derived direc-

tional feature of a T-F unit would always indicate that the T-F unit 

is probably dominated by target speech. 

Obviously, the directional features in Eq. (12) need an accurate 

estimation of the steering vector,  ̂( ), to yield high-quality and 

discriminative features. We use the principal eigenvector of  ̂ ( ) 

as the steering vector estimate. This strategy has been found to 

yield accurate steering vector estimates in many studies [19], [8].   

 

2.4. Mask Estimation 

 

Clearly, the performance of mask estimation plays a central role in 

the proposed algorithm. Our study trains a bi-directional long 

short-term memory (BLSTM) network to estimate the ideal ratio 

mask (IRM) [1], defined as the speech energy over the sum of 

speech energy and noise energy within each T-F unit, by minimiz-

ing the mean square error: 

     ∑ ‖ ̂ (   )  
|  ( ) (   )| 

|  ( ) (   )|  |  (   )| 
‖

 

   
 (13) 

It has been suggested in many studies that the mask estimator 

constructed using DNNs is capable of accurately determining the 

speech or noise dominance within each T-F unit, and yields re-

markable speech intelligibility and quality improvements over 

conventional algorithms in speech enhancement [2], [3], [24], [25], 

and word error rates (WER) improvements in robust ASR [26], 

[27]. The estimated mask,  ̂ (   ), is used to derive spatial covar-

iance matrices for beamforming as in Eq. (2). Even if the BLSTM 

only uses energy based features, it is still powerful enough to iden-

tify T-F units where the phase is much less contaminated. 

3. EXPERIMENTAL SETUP 

We evaluate our algorithms on the six-channel task of the recently-

proposed CHiME-4 dataset [4]. The six microphones are mounted 

on a tablet, with the second one on the rear and the other five fac-

ing front. It contains simulated utterances, and real recordings from 

four real-world environments (street, pedestrian areas, cafeteria 

and bus), and exhibits strong mismatches between training and 

testing conditions. The training data includes 7,138 simulated and 

1,600 real utterances, the validation data consists of 1,640 simulat-

ed and 1,640 real utterances, and the test data consists of 1,320 

simulated and 1,320 real utterances.  

Our acoustic model is a feed-forward DNN with seven hidden 

layers, each with 2,048 exponential linear units. The input feature 

is 40-dimensional log Mel filterbank feature together with its deltas 

and double deltas, and an 11-frame symmetric context window. 

The input dimension is therefore 1,320. Sentence-level mean-

variance normalization is performed on the input features before 

global mean-variance normalization. The dropout rate is set to 0.3. 

Batch normalization and AdaGrad are used to speed up training. 

Our acoustic model is trained on all the unprocessed simulated and 

real training data, except the utterances from the second channel of 

the real recordings. The total number of utterances for training is 

therefore 7,138*6+1,600*5 (~104h). The senone labels are gener-

ated from the GMM-HMM system provided in the challenge. Note 

that the beamformed signal is directly fed into the acoustic model 

for decoding. To facilitate the comparison with other systems, the 

task-standard five-gram and RNN language model are employed 

here for lattice re-scoring. We use our recently-proposed unsuper-

vised speaker adaptation algorithm [28] for speaker adaptation.  

Multiple BLSTMs taking in different features are trained for 

mask estimation using the 7,138*6 utterances (~90h) in the simu-

lated training data. The BLSTMs contain three hidden layers, each 

with 600 hidden units in each direction. Sigmoidal units are used in 

the output layer. The window size is 32ms and the hop size is 8ms. 
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512-point FFT is performed to extract 257-dimensional log power 

spectrogram features for BLSTM training. We apply 0.1 dropout 

rate to the output of each BLSTM layer. Sentence-level mean nor-

malization is performed on the spectral features, while no sen-

tence-level normalization is performed on spatial features. All of 

the features are then globally normalized to zero mean and unit 

variance. During training, we use the ideal speech covariance com-

puted directly from clean speech to derive the  ̂( ) in Eq. (12). At 

the running time, we use the model trained using the log power 

spectrogram feature together with the MSC feature to get an esti-

mated  ̂( ). When using the spatial features for training, we found 

that it is very helpful to initialize the corresponding parts of the 

network using a well-trained model built by only using the log 

power spectrogram features, likely because spectral information 

itself is very important for mask estimation. 

To address microphone failures, we first select a signal that is 

most correlated with the rest five signals, and then throw away the 

signals with less than 0.3 correlation coefficients with the selected 

signal. The rest signals, except the one from the second channel, 

are used to derive the diffuse or directional features.  

4. EVALUATION RESULTS 

The ASR results are presented in Table 1, where we use our DNN 

based acoustic model after sMBR training for decoding, and the 

task-standard tri-gram language model for decoding if not speci-

fied. The BeamformIt and MVDR via SRP-PHAT are the two 

official baseline systems provided in the challenge. They are repre-

sentative baselines of conventional approaches. Their performance 

on the real test set is however not impressive. 

As a comparison, we use the MSC feature,    (   ), as the 

 (   )  in Eq. (2) and      (   ) as the  (   ) in Eq. (3) to 

construct an MVDR beamformer using Eq. (6) for enhancement. 

Note that the range of    (   ) has been linearly mapped to       
within each utterance. Surprisingly, this simple approach, which 

does not even require any training or spatial clustering, achieves 

9.91% WER on the real test set. This is probably because the real 

noises recorded in the CHiME-3/4 dataset are mostly diffuse nois-

es. This makes sense as in practice the acoustic scene in a bus, 

cafeteria, pedestrian area, and on the street would contain noises or 

interferences from many directions, such as engine noises, back-

ground speakers, wind noises or room reverberations. Even if there 

are directional sources present, they are commonly much weaker 

than the target speaker when the SNR is not very low1. In such 

cases, the speech covariance matrix computed via weighted pool-

ing in Eq. (2) would still be dominated by target speech.  

Using the log power spectrogram feature to train a BLSTM to 

predict the IRM, we get to 7.28% WER. Adding the MSC features 

for BLSTM training pushes the performance to 6.92% WER. For 

the model trained with the log power spectrogram and directional 

features, we first use the model trained with the log power spectro-

gram and MSC features to get an estimated  ̂( ) and then use it to 

compute the directional features using Eq. (12). The result is fur-

ther pushed to 6.70% WER. The directional features yield better 

results over the MSC features. This is reasonable as noises or in-

ferences could also be directional. Note that after adding the spatial 

features, the performance on the simulated data however becomes 

worse, although consistent improvement is observed on the real 

data. This is likely because of the specific data simulation proce-

dure2 adopted in the CHiME-4 corpus, which uses the least square 

                                                 
1Users tend to not use speech recognizers in very noisy environments. 
2See http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/data.html for more details.  

algorithm to estimate the speech and noise images from a far-field 

recording and its corresponding close-talk recording. This proce-

dure could introduce some artifacts in the simulated data, especial-

ly on the fragile phase information that are important for spatial 

feature derivation.  

Using the task-standard five-gram and RNNLM language 

model for lattice re-scoring, the result is pushed to 4.54% WER. 

Note that the system so far is fully speaker independent. Further 

applying the unsupervised speaker adaptation algorithm in our 

recent study [28] improves the performance to 3.08% WER. This 

result is slightly better than the 3.24% WER obtained in the win-

ning solution of the CHiME-4 challenge by Du et al. [29]. Their 

acoustic model is a combination of one DNN-based acoustic model 

and four CNN-based acoustic models trained from augmented 

training data. The input feature is a combination of log Mel fil-

terbank features, fMLLR features and i-vectors. Their T-F masking 

based MVDR beamformer is constructed using a complex GMM 

based spatial clustering algorithm [19], a DNN based IRM estima-

tor, the silence frames determined by the backend ASR systems, 

and an iterative mask refinement strategy [30]. The runner-up sys-

tem by Heymann et al. [31] uses a BLSTM to drive a T-F masking 

based generalized eigen-vector beamformer [6], and a complicated 

wide-residual BLSTM for acoustic modeling. Input-level linear 

transform is performed on each testing speaker for unsupervised 

speaker adaptation. Their best performance when using the task-

standard RNNLM is 3.87% WER. Different from these competi-

tive systems, our approach is focused on frontend beamforming. 

Even with a simple feed-forward DNN as the backend acoustic 

model, our system has shown better performance. This justifies the 

benefits of the proposed beamforming algorithm. 

5. CONCLUDING REMARKS 

This study has proposed a novel approach to integrate spectral and 

spatial features to improve time-frequency masking based beam-

forming. Consistent improvement has been observed on the six-

channel task of the CHiME-4 challenge. Although the computation 

of the directional features requires a separate localization-like pro-

cedure, our results indicate that directional and diffuse features 

likely contain discriminative information for supervised mask es-

timation. Hence combining them with spectral features for DNN 

training would lead to better mask estimates. Future research 

would use deep learning based post-filtering to achieve further 

noise reduction. Replacing the DNN based acoustic model with an 

RNN based acoustic model may also yield better ASR results.  

6. ACKNOWLEDGEMENTS 

This research was supported in part by an AFRL contract 

(FA8750-15-1-0279), an NSF grant (IIS-1409431), and the Ohio 

Supercomputer Center. 

Table 1. Comparison of the ASR performance (%WER) with other approaches. 

Approaches 
Dev. set Test set 

SIMU REAL SIMU REAL 

BeamformIt! [32], [33] 8.62 7.28 12.81 11.72 

MVDR via SRP-PHAT [4] 6.32 9.38 7.05 14.60 

MSC as the Estimated Mask (no training) 6.49 6.16 9.77 9.91 

Log Power Spectrogram 5.67 5.16 6.09 7.28 

Log Power Spectrogram + MSC 5.63 5.08 6.31 6.92 

Log Power Spectrogram + DF 5.82 5.06 6.49 6.70 

+Five-gram LM and RNNLM 3.90 3.11 4.33 4.54 

+Unsupervised speaker adaptation  [28] 2.83 2.54 3.11 3.08 

Du et al. [29] (with model ensemble) 2.61 2.55 3.06 3.24 

Best single model of [29] - 2.88 - 3.87 

Heymann et al. [31] 2.75 2.84 3.11 3.85 
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