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ABSTRACT

Acoustic signals from microphone arrays are used to improve perfor-
mance in distant speech recognition due to the availability of spatial
information. And multichannel automatic speech recognition (ASR)
systems often separate speech enhancement module from acoustic
modeling, which may be not optimal for improving recognition ac-
curacy. In this work, we propose to improve multichannel speech
recognition by supplying the generalized cross correlation (GCC)
between microphones, which encodes spatial information, as input
features to a long short-term memory (LSTM) acoustic model in par-
allel with the regular acoustic features. Moreover, multitask learn-
ing architecture is incorporated and shows its ability to improve the
robustness of the model. We performed experiments on the AMI
and ICSI meeting corpora, with results indicating that the proposed
model outperforms the model trained directly on the concatenation
of multiple microphone outputs and the model trained on a beam-
formed channel.

Index Terms— speech recognition, microphone array, acoustic
model, generalized cross correlation, multitask learning

1. INTRODUCTION

Deep neural networks (DNNs) based acoustic models [1] have
driven tremendous improvements in automatic speech recognition
(ASR) in recent years. Further improvements are achieved by us-
ing more complex models such as convolutional neural networks
(CNNs) [2] and long short-term memory based recurrent neural
networks (LSTMs) [3]. However, it still remains challenging to per-
form recognition when the speaker is distant from the microphone,
because of the presence of background noise, reverberation, and
competing acoustic sources [4]. In such cases, ASR systems often
use signals from multiple microphones to enhance the speech signal
and reduce the impact of noise and reverberation. And multichannel
ASR systems often adopt a two-part architecture, in which a beam-
forming algorithm is applied to enhance the speech, followed by
conventional acoustic modeling approaches [5]. Since the speech
enhancement part is usually separate from the speech recognition
part, the system fails to optimize towards the final objective, i.e.
speech recognition accuracy, which leads to a suboptimal solution
[6].

To obtain an optimal performance, joint training of speech en-
hancement and acoustic model was proposed to improve speech
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recognition accuracy. Sainath et al. [7] presented a multichannel
neural network model trained directly from raw waveform input
signal. The spatial and spectral filtering were performed through
one layer of neural network. In [8], the beamforming and frequency
decomposition were factored into two separate layers in the net-
work. However, these approaches estimated fixed filter coefficients
for decoding, potentially limiting the ability of models to adapt
to unseen environments. A neural network adaptive beamforming
technique was proposed in [9] to address this issue in which the
filter coefficients are the output of the beamforming neural network.
To reduce the computational complexity, these approaches can be
implemented efficiently in the frequency domain [10]. Instead of
filtering in the time domain, Xiao et al. [11] estimated the parame-
ters of the frequency-domain beamformer from a generalized cross
correlation (GCC) [12] between microphones. However, it requires
simulated data to train the beamformer part of neural networks in
advance and then pretrains the acoustic model using the features
generated by the beamformer part.

Over the past few years, some works have shown that perfor-
mance can be improved by supplying complementary features as
inputs to the network in parallel with the regular acoustic features
for ASR. Seltzer et al. [13] have shown that augmenting the inputs
of a neural network with an estimate of background noise can im-
prove the robustness of the network to background noise. In the
meanwhile, Saon et al. [14] augment DNN inputs with speaker
i-vector features, and demonstrate significant improvement on the
speech recognition task.

Motivated by the above work, we propose the idea that the gener-
alized cross correlation between microphones is considered as input
features to improve the performance of multichannel speech recog-
nition. Acoustic signals from microphone arrays can be used to im-
prove the robustness in distant speech recognition due to the avail-
ability of additional spatial information. Therefore, exploiting the
additional spatial information from multiple microphones is essen-
tial for robust speech recognition in distant-talking scenarios. More-
over, the generalized cross correlation between microphones is one
of the representations that encode spatial information and typically
computed for localization. Consequently, we propose augmenting
the traditional acoustic features from microphone arrays with the
generalized cross correlation features between microphones. On the
other hand, it has been shown that multitask learning (MTL) archi-
tecture improves the generalization performance of a learning task
by jointly learning multiple related tasks together [15]. The model
in MTL architecture is able to transfer knowledge to others by shar-
ing some internal representations. Therefore, it is incorporated to
further improve the robustness, and the model learns to classify the
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feature into sensones and performs feature enhancement at the same
time. The simultaneously recorded close-talk feature is used to be
the second reference output.

Experiments on the AMI [16] and ICSI [17] meeting corpora
show that our proposed approach achieves improvements over the
model trained directly on the outputs of multiple microphones. In
addition, we also compare our model with the beamforming tech-
nique [18], in which GCC-PHAT is also used to compute the TDOA.
On the whole, our model achieves 6.3% and 3.6% relative improve-
ments over the model trained directly on the concatenation of mul-
tiple microphone outputs on the AMI and ICSI evaluation set, re-
spectively. Moreover, it also performs better than the beamforming
baseline model. The rest of this paper is organized as follows. Sec-
tion 2 describes our proposed model. The experimental setup is dis-
cussed in Section 3. Section 4 and Section 5 present the results and
conclusions, respectively.

2. MODEL

2.1. Generalized cross correlation between microphones

Generalized cross correlations have been used successfully to de-
termine the time delay of arrival (TDOA) of propagating waves be-
tween two spatially separated microphones. And TDOA estimated
from multiple microphone pairs can be used to parameterize the
source location [19, 20]. Hence, GCC actually encodes the loca-
tion of the speaker. In this work, the generalized cross correlation
between each microphone pair is computed using the generalized
cross correlation method with phase transform (GCC-PHAT) [21],
that is more robust to reverberation.

Given two channel signals xi(n) and xj(n), the GCC vectors
are computed as follows:

gccij (n) = IFFT

(
Xi (f)X

∗
j (f)

|Xi (f)X∗
j (f) |

)
(1)

where Xi(f) and Xj(f) are the Fourier transforms of the two sig-
nals, and ∗ denotes the complex conjugate. The TDOA for these two
microphones is estimated as:

d̂(i, j) = argmax
n

gccij(n) (2)

Ideally, gccij(n) should exhibit a peak over a restricted range, which
corresponds to the TDOA between microphone i and j. And the
separation distance of the microphones physically limits the range
of valid time delays. The acoustic path length of each signal differs
according to the location of the microphone and these differences in
arrival time are even greater when the space between microphones
is larger. This finite range is determined by the distance between the
microphones divided by the speed of sound.

In this work, our models are trained and evaluated on the AMI
and ICSI meeting corpora. AMI used an 8-microphone 10cm
radius uniform circular array, and ICSI used 4 boundary micro-
phones placed about 1m apart along the tabletop. The maximum
distance between any pair of microphones in the AMI corpus
is 20cm, and the maximum delay between two microphones is
τ = 0.2m/340m/s = 0.588ms. It corresponds to a less than 10
sample delay at a sample rate of 16kHZ. Therefore, the center 21
correlation coefficients for each microphone pair are sufficient to
predict the location of the speaker. There are totally 28 microphone
pairs in the 8-microphone array. On the whole, 588-dimensional
GCC vectors are used as auxiliary features for the neural network

Fig. 1. Diagram of an LSTM acoustic model with augmented GCC
inputs.

acoustic model at each time step. It encapsulates the relevant infor-
mation about the location of the speaker in a vector representation.
Similarly, we adopted the center 281 coefficients for the ICSI data.

Figure 1 shows an overview of the proposed model. In this
work, our model is evaluated on typical hybrid DNN-HMM frame-
works, in which the acoustic model estimates context-dependent hid-
den Markov model (HMM) state posteriors. For both training and
testing, the GCC features are concatenated to the acoustic features
from the microphone array at each time step. Thus the neural net-
work acoustic model is informed which speech segment comes from
which location. Two sets of time-synchronous inputs should be cre-
ated: one set of acoustic features which is the concatenation of the
individual features from each microphone in the microphone array
for phonetic discrimination and another set of GCC features that
characterize the location of the speaker which provides the audio
for the first set of features. The GCC features enhance the discrim-
ination between different channels and enable the neural network
acoustic model to make better use of acoustic signals from different
channels.

2.2. Regularization with multitask learning

The multitask learning architecture is adopted to improve the robust-
ness of our model. It is implemented by configuring the network
with two outputs, one recognition output which predicts context-
dependent states, and a second denoising output which reconstructs
clean features derived from the close-talk speech. The MTL module
branches off from the second LSTM layer of the acoustic model and
is composed of one fully connected DNN layer followed by a linear
output layer, as shown in Figure 1. In the recognition task, a discrim-
inative model is learned to classify sensons by optimizing the cross-
entropy (CE) criterion. Instead, the denoising model is optimized by
minimizing the mean squared error (MSE). During training, the gra-
dients back propagated from the two outputs are weighted by α and
1−α for the recognition and denoising task respectively. The model
parameters of the entire architecture are jointly learned to optimize
the interpolated objective function

E (θ) = αEce (θ) + (1− α)Emse (θ) (3)

The denoising output is only used in training to regularize the model
parameters, and the associated layers are discarded during decoding.
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3. EXPERIMENTAL SETUP

We perform experiments using the AMI and ICSI meeting corpora.
The split recommended in the AMI corpus is used: a training set of
80 hours, a development set and a evaluation set, each of 9 hours. In
the 72 hours ICSI corpus, 6 complete meetings are used for testing
(Bed008, Bmr005, Bmr020, Bmr026, Bro015 and Bro016). Meet-
ing speech recognition is characterised by speech overlap. For these
experiments, the overlapping segments are not excluded from train-
ing sets, and results on the full set as well as the subset that only
contains the non-overlapping segments are reported. The simulta-
neously recorded individual headset microphone (close-talk) data is
used to be the second reference output. An interpolation weight
α = 0.9 is used to balance the two tasks. We use a 50000 word
pronunciation dictionary [5] for the AMI and ICSI experiments. Two
in-domain trigram language models are estimated using the AMI and
ICSI training transcripts, respectively. They are further interpolated
with the trigram language model estimated from Fisher transcripts.

Kaldi [22] is exploited for building speech recognition systems.
The GMM model, which is used for generating the alignments to
train the neural network acoustic model, is the same as that in [23]. 3
LSTM layers of 1024 memory cells with a 512-unit projection layer
for dimensionality reduction [3] are used for acoustic modeling. In
this work, 40-dimensional log-Mel filterbank features are extracted
from every recording, and 5 frames (2 on each side of the current
frame) of acoustic features are spliced as input for acoustic models
to incorporate contextual information. During training, the network
is unrolled for 20 time steps for training with truncated backprop-
agation through time (BPTT) and acoustic models are trained with
cross-entropy (CE) criterion.

For comparison, the results of single distant microphone (SDM)
and traditional beamforming are also shown. Experiments with
SDM make use of the first microphone of the microphone array.
For the beamforming experiments, the BeamformIt toolkit [18] is
adopted to implement a weighted delay-and-sum beamforming, in
which GCC-PHAT is used to compute the TDOA to create a single
enhanced signal.

4. RESULTS

4.1. Analysis window size of GCC

The computation of GCC between each microphone pair is repeated
along the recording in order to respond to changes in the location
of the speaker. And a big analysis window leads to a reduction in
the resolution of changes in the location of speaker. On the other
hand, using a very small analysis window reduces the robustness
of the cross-correlation estimation, as less acoustic frames are used
to compute it. Accordingly, there is a tradeoff between resolution
and robustness. We begin by exploring the behavior of the proposed
model as the analysis window size of GCC varies. To match the
time-scale of acoustic features, GCC between microphones is also
computed every 10ms.

The word error rate (WER) results for the AMI experiments are
summarised in Table 1. It shows that we get improvements up to a
window size of 105ms. It also can be seen that making the window
size too large hurts performance because the estimation of GCC re-
duces responsiveness to changes in the location of speaker during
an utterance. Thus an analysis window size of 105ms is used in the
following experiments.

Figure 2 shows two examples of GCC features computed on a
window size of 105ms between first two microphones for two utter-

Table 1. WER(%) for different window sizes on AMI.

Window size (ms) 25 55 75 105 155

dev 36.6 36.3 35.8 35.7 36.5
eval 41.7 41.2 40.5 40.4 41.5

ances on the AMI and ICSI corpora. The vertical axis of this 2-D
image plot is time-delay parameter, and the horizontal axis is the
frame index of an utterance. The color of the image represents the
amplitude of GCC. For comparison with AMI, the time-delay be-
tween 20 and 40 is ploted for ICSI, where the estimated TDOA is
included. It can be observed that the delay values that correspond to
these maxima on the vertical axis are the estimated TDOA .

(a) AMI

(b) ICSI

Fig. 2. Illustration of GCC features between first two microphones
on AMI and ICSI.

4.2. Comparisons to baseline models

In this subsection we report on speech recognition experiments using
the AMI and ICSI corpora. Three baseline models are considered:
(1) training the LSTM acoustic model on the SDM data; (2) beam-
forming the multichannel signals into a single channel and following
the standard acoustic modeling approaches used for the SDM case;
(3) training the LSTM acoustic model directly on the concatenation
of the individual 40-dimensional log-Mel filterbank features from
the microphone array.

Since we have found that similar improvements were observed
on both the development and evaluation set for the AMI dataset, re-
sults on the evaluation set are only reported for simplicity of expo-
sition. Table 2 and 3 show the results for the AMI and ICSI cor-
pora respectively. As expected, severe performance degradation was
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observed with speech overlap. Compared with the results of SDM
experiments, significant improvements were achieved by using mul-
tichannel data. It shows the benefit of additional spatial information
in improving the performance of distant speech recognition.

Table 2. WER(%) on the AMI evaluation set.

Data Model with overlap no overlap
SDM - 48.4 39.8

MDM

beamformer 43.6 34.3
8ch concatenated 42.7 34.8

+ GCC-PHAT 40.4 33.0
+ MTL 40.0 32.2

For the AMI experiments, the model trained on the beamformed
signal performed slightly better than that trained directly utilising
the multichannel features on the non-overlapping speech recogni-
tion task, but it showed a lower performance on all segments which
include overlapping speech. That is probably because the competing
acoustic source results in less accurate TDOA estimates. It indicates
that using raw multiple input features in place of beamformed sig-
nal makes acoustic models learn better representations which take
into account some factor such as speech overlap. We next evalu-
ate the model in which GCC vectors are used as auxiliary features.
In this case, the model obtained WERs of 40.4% and 33.0% on all
segments and non-overlapping segments respectively, significantly
outperforming the two MDM baseline models. Another 0.4-0.8%
absolute reduction in WER was obtained by using multitask learning
architecture. Compared with the multiple input baseline model, the
proposed model achieved 6.3% and 7.4% relative improvements in
WER for all segments and non-overlapping segments. In addition, it
provided 8.2% and 6.1% relative improvements on all segments and
non-overlapping segments over the beamforming baseline model. It
is showed that our model performs well on both the overlapping and
non-overlapping speech recognition task.

Table 3. WER(%) on the ICSI evaluation set.

Data Model with overlap no overlap
SDM - 40.1 34.7

MDM

beamformer 34.1 27.6
4ch concatenated 30.3 25.7

+ GCC-PHAT 29.6 24.7
+ MTL 29.2 24.2

For the ICSI experiments, the multiple input baseline model ob-
tained considerable improvements over the beamforming baseline
model probably due to less accurate TDOA estimates from the mi-
crophone array which is characterised by large distances between
microphones. And similar improvements were also obtained by the
proposed model on the ICSI dataset. The results in Table 3 show that
the model, in which the GCC vectors are considered as input features
and MTL architecture is adopted, achieved 3.6% and 5.8% relative
improvements on all segments and non-overlapping segments over
the multiple input baseline model.

We observed that LSTM with GCC inputs were better than the
ones trained on ASR features only. Small, but consistent reduc-
tions in WER can be further obtained by MTL architecture. These
trends can be observed for both the AMI and ICSI dataset. On the

whole, the GCC-augmented network outperforms the multiple in-
put baseline model and beamforming baseline model. It suggests
that additional spatial information is beneficial for the neural net-
work acoustic model and could be utilized directly by the neural
network. The GCC-augmented network could take advantage of the
spatial information to improve performance for multichannel speech
recognition. Moreover, consistent reductions in WER are further
obtained by using multitask learning architecture. The denoising
model, which performs feature enhancement, predicts clean features
through the acoustic features from the microphone array and the
GCC features between microphones. It shares hidden representa-
tions with the model that predicts acoustic states. The parameters
of shared layers are regularized by the denoising model, which im-
proves the robustness of the GCC-augmented network.

(a) AMI (b) ICSI

Fig. 3. Frame accuracy on the validation set and training set during
training on AMI and ICSI.

Figure 3 shows the progress of validation set and training set
frame accuracies during training for the multiple input baseline net-
work and the model with GCC inputs and MTL architecture. The
proposed model obtained improvements for frame accuracy on both
the validation set and training set of the two datasets. It also suggests
that our proposed model improves the ability to model the acoustic
signal from the microphone array.

5. CONCLUSIONS

In this work, we proposed an architecture for multichannel speech
recognition tasks, in which the GCC vectors between microphones
are supplied as additional input features to acoustic models and
multitask learning is employed to improve the robustness through
regularizing the model parameters. The proposed model showed
promising results on the AMI and ICSI meeting corpora. It per-
forms well on both the overlapping and non-overlapping speech
recognition task. Besides, beamforming computation is not re-
quired, speeding up the decoding process. In the future, other ways
of training with GCC features for a streaming application will be
investigated.
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