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ABSTRACT

This paper addresses a front-end system for speech recognition of
spontaneous conversational speech signals that are recorded with
asynchronous distributed microphones such as smartphones. In our
previous work, we proposed combining blind synchronization and
a state-of-the-art microphone array speech enhancement technique,
e.g., a time-frequency mask based minimum variance distortionless
response (MVDR) beamformer. This approach has provided rea-
sonably high recognition performance even if we use asynchronous
microphones. However, because the previous speech enhancement
method was applied in a full-batch mode, it has been difficult to track
speaker position movement in a real meeting conversation. To make
it possible to handle the speaker movement, this paper describes our
attempt to refine the mask-based MVDR beamformer in a block-
wise manner, and reports that such a refinement reduces the word
error rate from 31.4% to 28.8% for real meeting recordings.

Index Terms— Meeting recognition, distributed microphones,
blind synchronization, mask-based MVDR beamformer, block-
batch

1. INTRODUCTION

Recently, automatic speech recognition (ASR) of spontaneous
speech spoken by a single speaker has achieved a high level of ac-
curacy [1, 2], and the performance of the distant speech recognition
(DSR) of a single speaker has also greatly improved (e.g., [3–5]).
Some DSR techniques for a single speaker have already reached a
level of commercial use, e.g., home assistance products. However,
despite much research over the years [6–17], ASR of multi-speaker
conversational speech still remains a difficult task especially when
we use distant microphone(s). In such a conversation scenario, we
have to consider overlapping speech, in addition to noise and re-
verberation. To handle these issues, there have been a number of
studies that deal with acoustic interferences in multi-speaker conver-
sations by using a standard microphone array equipped with several
synchronized microphones [9, 15–22]. By employing such a mi-
crophone array, we can realize powerful beamforming and improve
ASR performance [9, 15–18].

However, it is sometimes difficult to obtain synchronous mul-
tichannel recordings, because it requires all the microphones to be
connected to the same analog-to-digital converter, which may be
costly and impractical in many applications. In contrast, it is easy to
obtain asynchronous multichannel recordings, due to the widespread

*This work was undertaken when N. Ono was with National Institute of
Informatics.

availability of voice recording devices including smartphones. How-
ever, it then becomes difficult to apply beamforming approaches di-
rectly to such an asynchronous microphone array, because even a
small synchronization error can severely degrade performance.

To handle the asynchronous recordings, we have proposed em-
ploying blind synchronization before multichannel blind speech en-
hancement and confirmed that it improved the ASR accuracy [23]. In
[23], we apply a speech enhancement method in a full-batch mode,
i.e., we process an entire meeting to estimate spatial correlation ma-
trices for each speaker, and use these matrices to compute beam-
former coefficients, which were constant in each session. However,
our analysis of real meetings confirmed that, even for sitting meet-
ings, there were large fluctuations in speaker positions in our case
of up to 30 degrees (detailed in Sec. 2.2 with Fig. 2). Naturally, a
constant beamformer may not be optimal for dealing with such vari-
ations.

In order to refine the performance by tracking the speaker po-
sition movements, in this paper we describe our attempt to employ
a block-online speech enhancement approach [16]. However, the
straightforward application of a block-online approach causes a per-
mutation problem between time blocks. To avoid this block-wise
permutation problem, our proposed approach first calculates the pa-
rameters for obtaining the beamformer coefficients in a full-batch
mode, and then refines the parameters and the beamformer coeffi-
cients at each time block. We should note that our objective is not
to realize an online algorithm, but to obtain high recognition per-
formance with off-line processing. We will show that the proposed
block-wise refinement of the beamformer coefficients successfully
improves recognition performance for real meeting conversations
recorded with asynchronous microphones.

The rest of this paper is organized as follows. Section 2 de-
scribes the task of this paper, and Sec. 3 details our proposed ap-
proach, which consists of blind synchronization and speech enhance-
ment techniques. Section 4 reports the experimental results, and
Sec. 5 concludes this paper.

2. PROBLEM DESCRIPTION

2.1. Meeting scenario

The scenario dealt with in this paper is conversation sessions of four
to six speakers in a noisy room (Fig. 1). The length of each session
was around 15 to 20 minutes. We recorded real spontaneous con-
versations using four stereo microphones on smartphones (SP) on
an oval table (see Fig. 1). Here, although the stereo microphones
on each smartphone were synchronized, the four SPs were asyn-
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Fig. 1. Schematic diagram of the meeting room and the position of
the microphones.

chronous, and therefore there were offset time and sampling fre-
quency mismatches. These eight SP microphones are considered to
be asynchronous distributed microphones in this paper.

The objective of this paper is speech recognition of each speaker
utterance in real conversations recorded with the asynchronous dis-
tributed microphones on smartphones (“SP microphones”). In par-
ticular, we aim for a method that is robust to speaker movements.

2.2. Analysis of speaker movements in real meetings

To check the speaker movement during sessions, we looked at the
estimated directions of arrival (DOAs) and diarization of speakers,
that were estimated with 8-ch synchronous microphone array (AR
in Fig. 1) observations and a probabilistic spatial dictionary-based
method [24]. Figure 2 shows an example of estimated speaker move-
ments in a session. From these estimated DOAs of speakers, we can
see that the speakers moved up to 30 degrees during sessions despite
them sitting on chairs without casters. This suggests that building al-
gorithms that are able to track speaker positions may improve speech
enhancement performance.

Fig. 2. Example of estimated speaker directions in a conversational
session. Here, DOA=0◦ and 270◦ correspond to the display and the
seat with HM5 directions (see Fig. 1), respectively.

Fig. 3. Processing flow of the proposed meeting recognition system.

3. PROPOSED METHOD

Figure 3 shows the processing flow of the proposed method. We first
synchronize the SP microphone recordings by using a blind synchro-
nization technique. We then apply speech enhancement to the syn-
chronized observations. The refinement of this enhancement step is
the main contribution of this paper. Finally, the enhanced speech sig-
nals are passed to the ASR system to obtain the final transcriptions.
This section describes the synchronization and enhancement steps,
and the ASR step will be detailed in Sec. 4.2.

3.1. Blind synchronization

In this work, we record conversations with four smartphones as de-
scribed in Sec. 2. Because they do not communicate with each other
and each device records sound independently, they work as asyn-
chronous distributed microphones. In this case, the recording can
start at a different time on each device and the sampling frequency
is not completely identical even though they have the same nominal
sampling frequency, Therefore, if we assume that the sampling fre-
quency of each device is time-invariant, the asynchronous recording
is characterized by two parameters: the differences in recording start
and sampling frequency.

In our case, it is expressed as follows.

x0[t] = x0

(
t

fs

)
, (1)

x2S−1[t] = x2S−1

(
t

(1 + ϵS)fs
+ TS

)
, (2)

x2S [t] = x2S

(
t

(1 + ϵS)fs
+ TS

)
, (3)

where x0(t), x2S−1(t) and x2S(t) (S = 1, · · · , 4) denote continu-
ous time domain observation by the reference microphone, the left
and right channel observations of the S-th smartphone, and x0[t],
x2S−1[t] and x2S [t] denote their discretized signals, respectively.
Note that t is a discrete time variable in the equations above. We
utilize ch. 1 of the microphone array (AR in Fig. 1) as a reference
microphone x0(t) for synchronization and fs is its sampling fre-
quency. TS and ϵS are the two parameters that represent the offset
time and the sampling frequency mismatch of the microphones on
S-th smartphone, respectively. Note that we used the same TS and
ϵS for stereo observations because they were synchronized with each
other. It should also be noted that we can use the same TS for stereo
observations on a smartphone because the offset time TS does not
represent the time difference of arrival between stereo observations
but the difference of the recording start time (DST). As we cannot
estimate the absolute DST, we use cross-correlation between x0[t]
and x2S−1[t]+x2S [t] for estimating TS as detailed in the next para-
graph.

We synchronize the stereo observations [x2S−1[t], x2S [t]]
T with

the reference observation x0[t] by applying the blind synchroniza-
tion technique proposed in [25, 26] with a small modification [23].
The offset time TS is simply estimated by finding the peak of the
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cross-correlation between x0[t] and x2S−1[t]+x2S [t] and it is com-
pensated. Then, the effect of the sampling frequency mismatch ϵs is
compensated by a linear phase shift in the short-time Fourier trans-
form (STFT) domain. This is derived by the approximation that the
time-varying time difference between channels caused by the sam-
pling frequency mismatch is constant within a time frame. The sam-
pling frequency mismatch ϵS is estimated by maximizing the like-
lihood of the model where the compensated STFT representations
follows a time-invariant multivariate Gaussian distribution. The sig-
nal processing is detailed in [25, 26].

3.2. Blind speech enhancement

In a real meeting, the precise positions of speakers and distributed
microphones cannot be known in advance. Moreover, it cannot be
guaranteed that the results of blind synchronization will be consis-
tent with the positions of the speakers and microphones because the
synchronization manipulation may change the inter-channel phase
information. Therefore, a speech enhancement method has to work
in a blind manner. As such a blind speech enhancement technique,
this paper employs a time-frequency mask-based MVDR beam-
former, which is the state-of-the-art enhancement approach with
synchronized microphones [16, 22].

3.2.1. Mask-based MVDR beamformer

Let x̂(f, τ) = [x̂1(f, τ), · · · , x̂m(f, τ), · · · , x̂M (f, τ)]T be the
STFT of the synchronized SP microphone observations, where f
and τ are the indices of frequency and time frame, and M(= 2S)
is the number of microphones. The time-frequency mask based
MVDR beamformer for speaker k is given by

wk(f) =
R−1

x̂ (f)hk(f, τ)

hH
k (f, τ)R−1

x̂ (f)hk(f)
, (4)

where Rx̂(f) =
∑

τ x̂(f, τ)x̂
H(f, τ) and the steering vector

hk(f) of the MVDR beamformer of speaker k is estimated by using
time-frequency masks. ·H denotes the conjugate transpose of a
vector. By using these coefficients, the enhanced signal for speaker
k is obtained by

yk(f, τ) = wH
k (f)x̂(f, τ). (5)

In (4), the steering vector hk(f) should be estimated. To do so,
first, a time-frequency mask Mk(f, τ) for extracting each speaker k
is estimated by using a complex Gaussian mixture model (CGMM)
[16, 22], which will be detailed in Sec.3.2.2. Then, the steering vec-
tor hk(f) is calculated by using the estimated time-frequency masks
Mk(f, τ),

hk(f) = R−k(f)ek(f), (6)

where ek(f) is an eigenvector corresponding to the largest general-
ized eigenvalue of the matrix pencil (Rk(f),R−k(f)),

R−k(f) =
1∑

τ 1−Mk(f, τ)

∑
τ

(1−Mk(f, τ))x̂(f, τ)x̂
H(f, τ),

Rk(f) =
1∑

τ Mk(f, τ)

∑
τ

Mk(f, τ)x̂(f, τ)x̂
H(f, τ).

Table 1. Conversation datasets
Office-Exh. Office Sound-proof

T60 500 msec. 350 msec. 120 msec.
SNR 3-15 dB 15-20 dB 20-25 dB
#Spkr/ses. 4-6 4 4
Train. 40 sessions 14 sessions 30 sessions
Dev. 8 sessions
Eval. 8 sessions

3.2.2. Mask estimation in full-batch or block-online modes

In CGMM-based mask estimation, we assume that the observation
vector x̂ follows a CGMM [27]:

p(x̂(f, τ); θ) =

N+1∑
k=1

αfkNc(x̂(f, τ); 0, ϕτfkBfk), (7)

where αfk is a mixture weight (
∑N+1

k αfk = 1), Nc(x;µ,Σ) is
a complex Gaussian distribution with a mean vector µ and a covari-
ance matrix Σ, ϕτfk is the power of the speech source of speaker
k, and Bfk is the spatial correlation matrix of speaker k. Here
k = {1, · · · , N} corresponds to the source classes, and k = N + 1
corresponds to a noise class. In this paper, the number of speakers
N in each meeting session was given.

After estimating the model parameter set θ = {ϕτfk,Bfk, αfk}
by using, e.g., a maximum likelihood estimation method, the masks
are given by the posterior probability of each class

Mk(f, τ) =
αfkNc(x̂(f, τ); θk)∑N+1

k′=1 αfk′Nc(x̂(f, τ); θk′)
. (8)

Here, we detail the update rule for parameter {Bfk}, which
characterizes this paper. The parameter update rules for {ϕτfk, αfk}
can be found in [16].

In a full-batch mode, which we employed in our previous work
[23], the update rule for {Bfk} is the same as that in [16],

Bfull
fk =

∑T
τ=1

Mk(f,τ)
ϕτfk

x̂(f, τ)x̂H(f, τ)∑T
τ=1 Mk(f, τ)

, (9)

where T is the number of time frames in the entire recording of each
session.

On the other hand, as our proposed block-wise refinement, we
refine the parameter {Bfk} and the steering vectors hk(f) every F
frames, and update the MVDR beamformer coefficients (4) every F
frames. That is, F is the block size. The proposed update rule at
block b is

Bb
fk = η

∑Tb
τ=1

Mk(f,τ)
ϕτfk

x̂(f, τ)x̂H(f, τ)∑Tb
τ=1 Mk(f, τ)

+ (1− η)Bfull
fk , (10)

where Tb = F · b is the time frame index at the end of the b-th
block, and η is an adaptation parameter. If we use a “true” block-
online mode (η = 1), we face a permutation problem in between
time blocks, and we found that this problem is not easily solved for
real meeting recordings. On the other hand, by employing {Bfull

fk },
the proposed update rule can mitigate the permutation problem in
between time blocks, and can refine the parameters for every block.

It should be noted that, even with the block-wise refinement,
parameters for estimating the mask (8) should be calculated at all the
time-frequency slots to obtain R−k(f) and Rk(f) for calculating
(6).
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Table 2. Recognition results (WER %) for eval. set.
Mics. Sync. Enh. F=50 100 150 300 500 1000

(0.8sec) (3.2sec) (4.8sec) (9.6sec) (16sec) (32sec)
(a) SP (ch.1) - off 42.2
(b) SP off on (full) 40.2
(c) SP off on (block (η = 0.5)) N/A 37.3 38.4 N/A N/A N/A
(d) SP off on (block (η = 0.8)) N/A 38.9 38.4 N/A N/A N/A
(e) SP on on (full) 31.4
(f) SP on on (block (η = 0.5)) 30.5 29.7 28.9 29.2 28.9 29.2
(g) SP on on (block (η = 0.8)) 29.4 29.1 28.9 28.8 28.9 29.4
(h) Headsets - - 18.8

4. EXPERIMENTS

We evaluated performance in terms of the word error rate (WER).
We recorded several Japanese conversations involving four to six
participants in an office room adjacent to an exhibition hall. To
mimic the exhibition scenario, babble noise was played through
loudspeakers in the exhibition hall (see Fig. 1). The door was either
open or closed depending on the session.

For recordings, we used four asynchronous smartphones (SPs)
as described in Sec. 2. The degree of asynchronicity of the four SPs
is summarized in [23]. We also used headset microphones (HM)
and an 8-ch microphone array (AR) (see Fig. 1) for performance
comparison.

The recordings were divided into training, development, and
evaluation sets as shown in Table 1 “Office-Exh.”. We also employed
other meeting datasets recorded in a quiet office room (“Office”) and
a sound-proof room (“Sound-proof”) [15], which were used only for
training the ASR system. The length of each session was around 15
to 20 minutes.

4.1. Synchronization and enhancement setups

For the blind synchronization, the frame length was 256 ms and the
frame shift was half of the frame length. In time-frequency mask
based MVDR beamformer, the frame length and frame shift were 64
and 32 msec., respectively. For ASR evaluation, we have to deter-
mine which enhanced signal corresponds to which speaker. For this
purpose, we used the correlation between the headset observations
and enhanced signals.

We compare the performance in a full-batch mode with the per-
formance in a block-online mode by using various block sizes F =
[50, 100, 150, 300, 500, 1000].

4.2. ASR setups

The DNN structure of our acoustic model was a fully connected
feed-forward neural network with seven hidden layers (2048 units
each) and 4100 output HMM states. The acoustic model (AM)
was prepared using the following three-step procedure. As speech
features, we employed 40 log mel filterbank coefficients with their
delta and acceleration, and five left and five right context win-
dows. We first trained a seed acoustic model using about 600
h of Japanese lecture speech data from the Corpus of Spontaneous
Japanese (CSJ) [28], which was recorded with headset microphones.
We then adapted this seed AM to the meeting speech recognition
task by retraining the AM using all the headset recordings from our
training dataset of conversation speech shown in Table 1. Finally,
we adapted that AM to distant recordings by retraining it using the

conversation speech training data recorded with a distant micro-
phone from the microphone array (AR). Note that we did not retrain
the DNN with the enhanced speech.

We used a Kneser-Ney smoothed word trigram language model
(LM) [29], which was trained with transcripts of Japanese lecture
speech data from the CSJ and the training set of the meeting record-
ings, in addition to the topic-related WWW data. These three text
sets were mixed with weights that minimized the perplexity for the
meeting development set. The vocabulary size was 157k.

We used manual annotation for voice activity detection (VAD)
for ASR evaluation.

4.3. Results

Table 2 summarizes the speech recognition results in terms of WER
(%) for the evaluation set. The WERs with and without synchro-
nization (“Sync.”) and enhancement (“Enh.”) are shown. “Enh.= on
(full)” and “Enh.= on (block)” stand for enhancement with a full-
batch mode (9) and block-wise refinement (10), respectively. In
this table, time offsets were compensated for in all cases, even in
Sync.=off cases.

When using no synchronization or enhancement (Table 2(a)),
and applying enhancement without synchronizing the sampling fre-
quency mismatch (Table 2 (b)(c)(d)), the WERs were around 40
%. On the other hand, using both synchronization and enhancement
techniques (Table 2 (e)(f)(g)), we can reduce the WERs. When we
compare (e) with (f) and (g), we find that the proposed block-wise
refinement successfully reduced the WERs by 8 % relative WER
reduction. This confirms the effect of the proposed block-wise re-
finement. The frame size of F ≥ 150 seems to work well for our
dataset.

5. CONCLUSION

This paper addressed a front-end system for ASR of spontaneous
conversational speech signals that were recorded with asynchronous
distributed microphones. The basic concept is to combine blind syn-
chronization and blind speech enhancement methods. To improve
speech enhancement performance for real meetings that include the
fluctuation of speaker positions, we proposed a method for the block-
wise refinement of beamformer coefficients. Future work will in-
clude the implementation and evaluation of an online extension of
the proposed approach without employing the first full-batch step.
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