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ABSTRACT
Spectral envelope modelling is a central part of speech and
audio codecs and is traditionally based on either vector quan-
tization or scalar quantization followed by entropy coding. To
bridge the coding performance of vector quantization with the
low complexity of the scalar case, we propose an iterative ap-
proach for entropy coding the spectral envelope parameters.
For each parameter, a univariate probability distribution is de-
rived from a Gaussian mixture model of the joint distribution
and the previously quantized parameters used as a-priori in-
formation. Parameters are then iteratively and individually
scalar quantized and entropy coded. Unlike vector quantiza-
tion, the complexity of proposed method does not increase ex-
ponentially with dimension and bitrate. Moreover, the coding
resolution and dimension can be adaptively modified without
retraining the model. Experimental results show that these
important advantages do not impair coding efficiency com-
pared to a state-of-art vector quantization scheme.

Index Terms— Entropy Coding, Gaussian mixture mod-
els, Envelope Modelling, Speech Coding, Audio Coding

1. INTRODUCTION

Spectral envelope models form an integral part of speech and
audio codecs. While speech codecs models the short-time
spectral envelope with the help of linear predictive coding
(LPC) parameters, audio codecs models the same usually with
the help of scale factor bands [1, 2, 3]. A further parametriza-
tion of the envelope shape known as distribution quantization
(DQ) was recently introduced in [4]. For transmission, all of
these parameters need to be quantized and coded. DQ param-
eters as well inter-band differential spectral factors are consid-
ered mainly decorrelated. Therefore, they are typically scalar
quantized and indices are further coded by a memoryless en-
tropy coder. On the other hand, LPC parameters are usually
converted to line spectral frequencies (LSF) before being vec-
tor quantized [5].
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Typically, envelope parameters exhibit some degree of
correlation, whereby vector quantizers (VQ) can be used in-
stead of scalar quantizer to reduce the bitrate [6, 7, 8]. A
vector quantizer is essentially a codebook which covers all
possible input vectors, whereby the codebook size is a func-
tion of the number of dimension and bitrate [8, 5]. It increases
exponentially with both increasing bitrate (with fixed dimen-
sion) or dimension (with fixed bitrate). Codebook size, in
turn, is directly proportional to the computational complexity.
Specifically, if we use B bits to transmit the codebook vector,
then we have 2B codebook vectors. If the input vector is
of length N , then we need O(N2B) operations to find the
optimal codebook vector and an equal amount of storage. To
reduce the complexity and memory requirements, several ap-
proaches have been proposed. One of the most popular ones
is multi-stage vector quantization [9, 10], which splits the
task into multiple stages, where each stage has only a small
codebook. For a codebook with M stages, we thus have a
computational complexity of O(NM

∑
k 2Bk).

Another approach for encoding the signal is to use para-
metric models of the distribution, such as Gaussian mixture
models (GMM) [11, 12, 13]. Specifically, by assigning the
input signal to a specific Gaussian, we can use the Karhunen-
Lóeve transform to decorrelate samples, whereby the signal
can be quantized and coded with conventional methods such
as a lattice quantizer [12, 13]. The computational complex-
ity of the method is then essentially independent of bit-rate.
However, the approach does not provide optimal coding effi-
ciency, since Gaussian components of the mixture will exhibit
some degree of overlap. It follows that any input vector could
(in theory) be assigned to any Gaussian component, whereby
the representation has inherent redundancy.

Instead of decorrelating the signal, we propose an itera-
tive process, where previously encoded samples of the signal
are used as prior information for the following samples. By
updating the parameters of each Gaussian component based
on the prior samples, we can use a scalar entropy coder for
the current sample. The advantages of our proposal are three-
fold; 1. The complexity is essentially independent of bit-rate
and dimension, 2. we do not require a component classifier
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and overlaps between Gaussian components are taken opti-
mally into account, and 3. quantization is performed in the
original domain and not in a transformed domain, for high
computational efficiency, and direct control of the quantiza-
tion accuracy.

2. MULTIVARIATE GAUSSIAN DISTRIBUTIONS

Our objective is to quantize envelope parameters x ∈ RN×1

and transmit the quantized parameters x̂ using an entropy
coder. We will assume that x can be modelled using a Gaus-
sian mixture model (GMM) with M components such that
the probability distribution function is

f(x) =

M∑
k=1

λkfk(x), (1)

where
∑M

k=1 λk = 1,

fk(x) = |2πΣk|−
1
2 exp

(
− 1

2 (x− µk)T Σ−1
k (x− µk)

)
(2)

and |Σ| denotes the determinant of the covariance matrix Σ
and µk and Σk are, respectively, the mean and covariance of
the kth Gaussian.

We encode the elements of x = [ξ0, ξ1, . . . , ξN−1] one
by one, and use the previously encoded elements as prior in-
formation for subsequent elements. In other words, we will
use the conditional probability f(ξh | ξ0, . . . , ξh−1) to en-
code the element ξh, or more specifically, the corresponding
cumulative probability function.

Let us begin with deriving the conditional probability dis-
tribution function for a single multivariate Gaussian,

f(x) = |2πΣ|−
1
2 exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (3)

We can split x into two parts, x0 and x1, corresponding re-
spectively to the coefficients which have been already coded
x0 and those still to be coded x1 as

x =

[
x0

x1

]
, where

{
x0 = [ξ0, . . . , ξh−1]T

x1 = [ξh, . . . , ξN−1]T .
(4)

The mean and covariance must be split accordingly as

µ =

[
µ0

µ1

]
and Σ−1 =

[
A0 A01

AT
01 A1

]
. (5)

Here we use the notation Ak for the partition matrices, to em-
phasise the fact that these are partitions-of-the-inverse of the
covariance, which is in general different from the inverses-of-
the-partitions of the covariance.

With these definitions we obtain the equality

(x− µ)T Σ−1(x− µ) = (x1 − µ̂1)TA1(x1 − µ̂1)− c, (6)

where{
µ̂1 = µ1 −A−1

1 AT
01(x0 − µ0),

c = (x0 − µ0)T
[
A01A

−1
1 AT

01 −A0

]
(x0 − µ0).

(7)

Substituting into Eq. 3 yields

f(x) =
ec

|2πΣ|
1
2

exp

(
−1

2
(x1 − µ̂1)TA1(x1 − µ̂1)

)

=
ec|A1|

1
2

|Σ|
1
2

exp
(
− 1

2 (x1 − µ̂)TA1(x1 − µ̂)
)

|2πA1|
1
2

.

(8)

In other words, when x0 is known, then x1 follows the normal
distribution with covariance A−1

1 and mean µ̂, but such that

the probability distribution is scaled with α = ec|A1|
1
2

|Σ|
1
2

.

When the signal is a mixture of multiple Gaussians, as in
Eq. 1, then it can be written as

f(x) =

M∑
k=1

λkαkfk(x1; µ̂k, A
−1
k,1), (9)

where f(x;µ,C) is the multivariate Gaussian of x with mean
µ and covariance C, and αk, µ̂k and Ak,1 are calculated for
each component as in Eqs. 4–7. The probability distribution
of x1 can then be obtained by scaling the above expression
such that

∑M
k=1 λkαk = 1.

In other words, the distribution of x1 remains a GMM,
but the weights and means of each Gaussian component are
updated depending on the previously encoded samples. The
covariancesA−1

k,1 are dependent only on Σk, whereby they can
be calculated off-line.

The overall algorithm can then be stated as:

1. Encode the first component ξ0 using conventional,
scalar-valued arithmetic coding [14, 5], where the mean
and variance of each Gaussian are the first components
of µk and Σk.

2. For h = 1 to N − 1

(a) Define covariances and means for each mixture
component according to Eqs. 4–7.

(b) Encode component ξh using conventional, scalar-
valued arithmetic coding, where the means and
variances of each Gaussian are obtained from
above.

On each iteration, we need to calculate only the mean,
variance and weights of each Gaussian for the current sam-
ple, which are essentially vector multiplications of algorith-
mic complexity O(N − h), whereby the overall complexity
is O(N2). However, arithmetic coding requires evaluation of
the cumulative distribution of M Gaussian components, at an
overall complexity of O(MN). Though this would typically
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Fig. 1. Illustration of 2D Gaussian mixture model with 2
Gaussians.

Fig. 2. Histogram and probability distribution model of first
sample ξ0.

Fig. 3. Histogram and proba-
bility distribution model of ξ1
w.r.t Gaussian A.

Fig. 4. Histogram and proba-
bility distribution model of ξ1
w.r.t Gaussian B.

be a relatively small number, it has a large constant coeffi-
cient, since calculation of the cumulative distribution involves
evaluation of the error function, which is a non-elementary
special function. To reduce the complexity of evaluating the
cumulative distribution, we can approximate it with a distri-
bution of similar shape, like, for example, the logistic distri-
bution, whose cumulative distribution has a trivial form [15].

3. EXPERIMENTS

As an illustration of the algorithm explained in Sec. 2, we
consider a two dimensional Gaussian distribution with two
components as shown in Fig. 1. Our objective is to encode
an observation using the Gaussian mixtures. The first sam-
ple of the observation can be directly encoded as explained
in the first step of the algorithm, since there are no priors.
Fig. 2 shows the 1D histogram for the first parameter along

with the marginal distribution of the 2D Gaussian mixture
model. With the quantized first observation as a-priori, one
can determine the distribution in N − 1 dimensional space
which in our case is 1 dimensional space as explained in the
second step of the algorithm. If the first observation lies near
the center of Gaussian A, Eq. 9 yields distribution as shown
in Fig. 3. The weight assigned to Gaussian B is so small that,
for all practical reason, it can be ignored. Similarly if the first
observation lies near the center of Gaussian B, the output of
Eq. 9 yields distribution as shown in Fig. 4. The weight as-
signed to Gaussian A is so small that, for all practical reason,
it can be ignored.

After this introductory illustration, we can proceed to the
evaluate the model with real data. For the experiment, we
chose 3 variants of LPC, 2 variants of DQ and 3 variants of
scale factor band. The line spectral frequencies (LSFs) is a
representation often used for encoding linear predictive mod-
els [1, 2, 3]; D-LSF (delta-LSF) are the intra-frame LSF dif-
ference and LSF-IS (LSF-Inverse Sigmoid) are computed by
normalizing the LSF and then computing the inverse sigmoid.
The distribution quantization represents spectral envelopes in
terms of energy ratios (DQ-ER) [4] whereas log difference
(DQ-LD) of the same segments is a similar measure. Scale
Factor Bands (SFBs) are piece-wise constant spectral enve-
lope, and their logarithms (SFB-LD) and inverse sigmoids
(SFB-IS) represent alternative parameterizations. The log do-
main and inverse sigmoid maps the normalized input range
[0,1] to input range [0,∞] and [-∞∞] respectively.

As a reference for the GMM-based algorithm, we used
tree searched multi-stage vector quantizer as described in [10].
To simplify evaluation, we did not to use inter-frame depen-
dencies which is usually done in the design of the vector
quantizers [10].

We trained both the VQ and the GMM using the training
set of the TIMIT database [16]. The training was based on
689466 vectors. For narrow band (NB), the VQ was designed
at 24 and 33 bits. The GMM was trained with 3, 5 and 10
Gaussians. For wideband (WB), the VQ was designed at 36
and 43 bits. The GMM was trained with 5, 10 and 15 Gaus-
sians.

Methods were tested over the test set of the TIMIT
database [16] with 25493 test vectors. A rate loop was used
such that bit consumption of each frame of our GMM based
system (variable bit rate) is comparable to the VQ based ref-
erence system (constant bit rate). We used mean log spectral
distance (LSD) between original and quantized envelopes as
our primary evaluation parameter.

4. RESULTS

Fig. 5 compares the mean log spectral distance (LSD) of all
the parameters for VQ and GMM10 at NB at 33 bits and for
VQ and GMM15 at WB at 43 bits. From the comparison,
it can be concluded that among the LSF variants, LSF per-
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Fig. 5. Mean Log Spectral distance (LSD) (dB) vs all param-
eters at 33 bits (NB) and 43 bits (WB).

forms better than D-LSF and LSF-IS for VQ, GMM10 and
GMM15. DQ-LD also performs slightly better than DQ-ER
among the DQ variants. The difference among the SFB vari-
ants are minor. Hence, for the further analysis, we chose LSF,
DQ-LD and SFB parameters among the 8 available types of
model parameters.

Fig. 6 compares the mean LSD for the chosen param-
eters for all the configurations (VQ and GMM variants) at
both NB (24 and 33 bits) and at WB (36 and 43 bits) re-
spectively. The performance is relatively constant at both
high and low bitrates for NB and WB respectively. At NB,
VQ performs slightly better than the GMM versions for both
LSF and SFB parameters but GMM versions perform better
than VQ for DQ-LD. At WB, VQ perform slightly better than
GMM versions for all the three parameters (LSF, DQ-LD,
SFB). The difference between VQ and GMM versions are
slightly higher at 36 bits than 43 bits at WB. The difference
could be explained by the fact that at low bitrates, the GMM
method predicts the probability distribution of future samples
from quantized previous samples. The feedback of quantiza-
tion noise might thus reduce coding efficiency when encoding
later samples. Among the Gaussian versions, GMM10 seems
to slightly better than GMM3 and GMM5 at NB and GMM15
seems to be slightly better than GMM5 and GMM10 at WB.

Table 1 compares the proportion of outliers for the LSF
parameter for VQ and GMM10 at NB at 24 bits and for VQ
and GMM15 at 43 bits at WB. The number of outliers and
the mean LSD of GMM10 and GMM15 are comparable to
VQ at NB and WB respectively. The values of mean LSD are
less than 1dB at both NB and WB for the compared configu-
rations. By making use of inter-frame dependencies, one can
expect the reduction in the proportion of outliers and mean
LSD.

5. CONCLUSION

Modelling and coding the spectral envelopes is an integral
part of both audio and speech codecs. In this paper, we have

Fig. 6. Mean Log Spectral distance (LSD) (dB) vs all config-
urations for LSF, DQ-LD and SFB at NB (24 and 33 bits) and
WB (36 and 43 bits).

Condition 2-4dB > 4dB Bits SD
VQ-NB-24 3.87 % 0.59 % 24.00 0.68 dB
GMM10-NB-24 3.91 % 0.66 % 24.32 0.67 dB
VQ-WB-43 5.85 % 0.94 % 43.00 0.81 dB
GMM15-WB-43 6.87 % 1.31 % 42.40 0.87 dB

Table 1. Outlier comparison for LSF parameter at 24 bits
(NB) and 43 bits (WB).

proposed an iterative GMM based entropy coder to encode
the spectral envelope parameters. The performance of this
proposed system is on par with VQ at both NB and WB con-
ditions with several advantages. The advantages of our itera-
tive GMM based system compared to VQ and previously pro-
posed GMM based systems are: 1. The complexity and the
training procedure is independent of both bitrate and vector
length. 2. Unlike previous GMM-based coding schemes, the
new method does not require decorrelation of the parameters
using an extra transformation, which simplifies the design of
the system. 3. There is no need for a component classifier.

The performance of iterative GMM based entropy coder
was on par with VQ in terms of mean LSD values at both
NB and WB for all the bitrates tested. Iterative GMM based
entropy coder has lower complexity and is more flexible in
comparison to VQ system. This demonstrates that the pro-
posed method provides similar accuracy as VQ based meth-
ods, but with higher flexibility and lower complexity, and that
the method can be used to replace VQ in any speech and audio
coding systems.
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