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ABSTRACT

In this paper, we analyze how much, how consistent and how
accurate data WaveNet-based speech synthesis method needs to be
able to generate speech of good quality. We do this by adding artificial
noise to the description of our training data and observing how well
WaveNet trains and produces speech. More specifically, we add
noise to both phonetic segmentation and annotation accuracy, and
we also reduce the size of training data by using a fewer number
of sentences during training of a WaveNet model. We conducted
MUSHRA listening tests and used objective measures to track speech
quality within the conducted experiments. We show that WaveNet
retains high quality even after adding a small amount of noise (up to
10%) to phonetic segmentation and annotation. A small degradation
of speech quality was observed for our WaveNet configuration when
only 3 hours of training data were used.

Index Terms— speech synthesis, WaveNet, deep neural network

1. INTRODUCTION

WaveNet is a neural network for generating high-quality synthetic
speech. It was introduced by Oord et al. [1] in 2016 as a new
generation speech synthesis algorithm outperforming both statistical
parametric and concatenative methods (two most popular and widely
used methods for speech synthesis).

WaveNet is a very powerful deep neural-network based architec-
ture capable of generating speech signal directly sample-by-sample
without a need of a vocoder parametrization (a necessary step in sta-
tistical parametric speech synthesis, considered as one of the factors
causing a degradation of speech quality) or a speech segment con-
catenation (a fundamental principle of concatenative speech synthesis
that is prone to introduce local artifacts to synthetic speech). Simply
said, WaveNet models the conditional probability of a next sample,
given previous samples and linguistic and prosodic conditions de-
rived from to-be-synthesized information (usually in the form of a
textual or phonetic representation). The generated speech is very
natural and of a high quality, opening new possibilities for speech
generation [1, 2, 3]. Recently, WaveNet was also used for statistical
voice conversion [4]. While the WaveNet architecture is based on
convolutional neural network (CNN), a similar method for speech
synthesis based on recurrent neural-network (RNN) architecture was
also proposed [5].
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Traditional methods of speech synthesis have a known behavior
and data requirements. Concatenative methods like unit selection
[6] are susceptible to the way and accuracy of annotating the source
speech data and its segmentation to phone-like units because errors in
these processes could cause a concatenation of incompatible speech
segments. As a result, artifacts can occur in synthetic speech. On
the other hand, parametric speech synthesis [7, 8] is more forgiving
of individual errors which are smoothed out by a statistical model.
But still, to train a good parametric model, a consistent speech data
is advantageous [9]. It is also known that concatenative methods
require much more data. The problems mentioned above also apply
to so-called hybrid approaches in which the concatenation is driven
by a parametric model [10, 11, 12].

WaveNet speech synthesis is a novel approach and thus very little
is known about its data requirements. In this paper, we experiment
with different quality of the source speech data and see how much
WaveNet is sensitive to various kinds of errors and data imperfections.
We intend to reveal some insight and intuition into the network.
Knowing what is important can help us to focus on right properties
when recording a new voice or creating a new voice building pipeline.

Adding noise to annotation (phonetic transcription of source
speech data) and segmentation (phone boundary placements) can
show us how precisely the data must be prepared for WaveNet-based
speech synthesis. These tasks are usually done automatically with
optional human inspection or correction. There is always a possibility
of errors occurring during these processes.

Recording a new voice is a very laborious task. Higher the
number of recorded hours higher the cost and effort. Knowing the
sufficient amount of speech data is also very valuable information.
In this work, we also experiment with the amount of data WaveNet
is trained on. We present several experiments in which we train
the WaveNet model with various variants of noise in annotation and
segmentation together with a various amount of training data. We
conducted MUSHRA listening tests and used objective measures to
track speech quality within the conducted experiments.

2. WAVENET ARCHITECTURE

Our WaveNet implementation is based on [1] and [2]. We used a
stack of 20 dilated convolution layers with gated activation functions

z =tanh(Wy xx) © o(Wy * ),

where o is a sigmoid function, f and g denote filter and gate and W
is a learnable convolution filter.

Each stack layer has 128 residual connections to the following
layer and 128 skip connections. Skip outputs of all layers are con-
catenated and passed through two ReLLU postprocessing layers into
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a softmax layer. The model has two ReLU layers for preprocessing
local conditions globally and one more in each stack layer.

Waveform samples were quantized with the p-law algorithm into
256 discrete values. Dilatation pattern was same as in the original
paper [1], i.e.,

1,2,4,...,512,1,2,4, ..., 512.

We used 24kHz sample rate. The network was therefore condi-
tioned with approximately 85 ms of previous speech. We did not use
global conditioning. We trained a new model for each experiment.

The neural network was trained with Adam optimizer set to
default parameters. We used TensorFlow framework and GTX1080Ti
GPU s to train our models. Training one such model on one graphics
card takes approximately two days.

2.1. Local conditioning

Local conditions are used to force WaveNet into generating speech
corresponding to target text. The WaveNet model is conditioned with
these features:

e phone identity of the current and neighboring phones (repre-
sented as one-hot vectors);

e logarithm of fundamental frequency (interpolated in unvoiced
parts);

e voicing (binary value);

e sample position within the current phone (coarse coded vector,
dimension was experimentally set to 100).

Similarly to [2], we found that including extra prosody features
have little effect on generated speech quality.

3. OBJECTIVE MEASURES

Cross-entropy loss value used for backpropagation during the train-
ing of a neural network is not a good indicator of generated speech
quality (considered as a common problem of generative models). To
measure speech quality during training and to compare waveforms
generated by various WaveNet configurations we used simple objec-
tive measures based on mel cepstral analysis: Compared utterances
A and B are represented by sequences of mel cepstral coefficients
{CA[K]}Y4 and {Cp[k]},5,. Since the original phone duration
was used for speech generation in our experiments, corresponding
utterances are always perfectly aligned (on the phone level) and the
distance between them can be simply calculated as

Di(A, B) = 3" de (CalK], Co k)

where dg is the Euclidean distance. In our experiments, this measure
is referred to as fixed.

Besides, we also used another measure based on the DTW algo-
rithm, which is convenient for general (unaligned) sequences. In our
experiments, this measure was expected to improve the sub-phone
alignment or to cope with possible inaccuracies in the segmentation
of the testing data. This measure is simply referred to as dtw.

We also used these measures to ensure convergence because we
sometimes experienced (especially when training on very noisy data)
that a network diverged from audible speech although loss value was
still converging. We used an objective measure threshold as a signal
for restarting the training.

4. LISTENING TESTS

We used MUItiple Stimuli with Hidden Reference and Anchor
(MUSHRA) listening tests to compare speech quality generated
by various WaveNet models. Listening tests followed the ITU-R
recommendation BS.1534-2 [13]. For each experiment, the same
set of 20 sentences were synthesized. The sentences were excluded
from training the WaveNet models. Original prosodic patterns (both
duration and pitch contour) were imposed when generating the
test sentences. 13 listeners participated in the tests. Each listener
evaluated all sentences.

In each MUSHRA test, versions of every single sentence gener-
ated by the various WaveNet models that corresponded to the various
experiments described further in Section 5 were compared with re-
spect to naturalness. A natural version of each sentence (further
referred to as NV) was hidden in each set and used as a reference
(upper anchor). Each set also included a version generated by the
baseline configuration of our WaveNet speech synthesis in which all
available data were used (further referred to as BL). The listener was
required to rate the versions between 0 (completely unnatural) and
100 (completely natural). Due to the presence of the reference version
in each set, the listener was instructed to give one of the versions
a rating of 100. Since it is unclear how to interpret a lower hidden
anchor when rating synthetic speech [14, 15], no lower anchor was
included in the tests.

5. EXPERIMENTS AND RESULTS

The quality of synthesized speech depends on several aspects: the
synthesis method, the quality and amount of training data and the
proper description of training data. Besides the word-level annotation,
the data description includes primarily the phonetic annotation and
segmentation, i.e., the appropriate sequence of phonetic units and
the location of boundaries between them. It could also be widely
extended with additional levels of description, e.g., with various
phonetic, prosodic or higher-level linguistic features. Our initial
experiments are focused on the impact of the fundamental level: the
accuracy of the phonetic annotation and segmentation.

Disregarding the quality of the speech data, a certain description
inaccuracy is related to the natural speech variability. For example,
given the continuity of speech, an exact boundary location is not
possible in a smooth transition between two similar phones; this is il-
lustrated in our simple experiment described in Section 5.2. Similarly,
the real pronunciation of a word can lie somewhere between two
alternative pronunciations represented by slightly different phonetic
units; so a “correct” pronunciation cannot be selected.

Besides this ambiguity (which corresponds rather to the nature of
speech), real speech data can also contain pronunciation inaccuracies
or even failures. Various errors can also arise during the annota-
tion process, either made by a human or caused by a partly/fully
automatic process of converting text to its phonetic representation
(pronunciation). Additionally, phone boundaries estimated by au-
tomatic phonetic segmentation methods (typically based on hidden
Markov models [16, 17]) can be appreciably misplaced.

As a result, real speech data naturally contains a combination of
both annotation and segmentation errors. Since the examination of
both problems together would be challenging, we performed indepen-
dent experiments on the influence of the annotation and segmentation
accuracy.

Besides the experiments on errors in speech data description, the
amount of training data was analyzed as well. Naturally, the more
training data, the better quality of synthesized speech can be expected.
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Fig. 1. Difference between the original (automatic) and average
manual segmentation. As a result of the alignment to pitch marks, the
difference is discrete in voiced speech segments, and histogram has
secondary peaks.

However, the process of recording high-quality speech data is costly
and time demanding [18], or the amount of available data can be
limited.

Similarly, as the annotation and segmentation errors are closely
related, the necessary amount of data probably depends on its quality,
i.e., the required amount may be lower for data of high quality and
consistency.

5.1. Experimental data

For our experiments, we employed a large speech corpus recorded by
a professional male speaker for unit selection speech synthesis [18].
Although the corpus language is Czech, we believe our results would
be valid also for other languages.

The selected training data set contained 10,000 utterances (about
14 hours of speech). Since this speech corpus has been used in many
speech synthesis experiments and is still being used in a commercial
unit-selection based text-to-speech system, it is considered to be a
suitable experimental data, since all the revealed bugs have been
fixed.

5.2. Segmentation accuracy

To evaluate the accuracy of phonetic segmentation of our experi-
mental data, ten utterances were taken and their (automatic) phonetic
segmentation was blurred so that each boundary was randomly shifted
in the range of neighboring phones. Then, two speech processing ex-
perts tried to fix the segmentation. They utilized a specialized editor
that displayed the waveform, spectrogram, pitch, and the segmenta-
tion to fix. The segmentation (in voiced segments) was automatically
aligned to the moments of glottal closures (pitch marks) since it was
also done in the original segmentation.

Results of this simple experiment are presented in Fig. 1. Mean
segmentation difference (4= standard deviation) between the original
automatic and average manual segmentation was 0.9 4= 9.5 ms; in the
percentage of the duration of the neighboring phones it corresponds
t0 0.7 £ 7.2 %.

However, these values should not be understood only as a seg-
mentation error in the data; they also include a natural variabil-
ity/ambiguity of the phone boundaries is speech waveform. For
comparison, the difference between boundaries placed by the two
annotators was 2.1 = 8.8 ms (1.6 &= 6.8 %).

100

1

80
60 |
40

—

|
I

! 1 ]
! 1 )
T ! !
‘ :

20| | ! 1
- I
+ | N :

1

1 -
L SU10 SU30 SU50 SU70 SG10 SG25 SG50

MUSHRA score

Lo = e

‘4
S R Iu

=
<
@
c

Fig. 2. Results of listening test: segmentation accuracy.

System Objective metric | MUSHRA score
fixed dtw mean | median
NV n/a n/a 99.90 100
BL 0.0560 | 0.0422 | 77.40 85
SU10 0.0621 | 0.0458 | 71.70 80
SU30 0.0741 | 0.0477 | 36.41 32
SU50 0.0811 | 0.0472 | 23.50 19
SuU70 0.0962 | 0.0534 | 11.37 5
SGI10 0.0617 | 0.0433 | 68.24 75
SG25 0.0748 | 0.0468 | 46.17 47
SG50 0.1068 | 0.0553 | 17.43 14

Table 1. Results of experiment on segmentation accuracy.

5.3. Segmentation errors

To analyze the robustness of WaveNet to segmentation errors, arti-
ficial noise was added to the default segmentation. Two different
probability distributions of noise were used: uniform and Gaussian
distribution. The segmentation error in real speech corresponds rather
to the Gaussian distribution. On the other hand, the uniform distribu-
tion controls the extent of the error directly.

The range of uniform distribution is given as

(t—p-dr,t+p-dg)

where ¢ is the default time of boundary, d;, and dr are durations
of left and right phones and p defines the relative error magnitude —
see Figure 3 for a better understanding. The mean of the Gaussian
distribution is set to ¢ and the standard deviation is given in the same
manner as the range of the uniform distribution.

We used notation SUz and SGx for experiments/systems with
uniform and Gaussian distributions of segmentation noise, respec-
tively, where x is the relative parameter p in percentage.
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Fig. 3. Segmentation errors — distribution functions for shifting phone
boundaries (an example for p = 0.3).
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Fig. 4. Results of listening test: annotation accuracy.

System Objective metric | MUSHRA score
fixed dtw mean | median
NV n/a n/a 99.98 100
BL 0.0560 | 0.0422 | 80.74 87
PS10 0.0573 | 0.0428 | 76.66 81
PS20 0.0641 | 0.0470 | 48.93 50
PS40 0.0680 | 0.0496 | 27.28 24
PAO5 0.0643 | 0.0469 | 48.32 49
PA15 0.0690 | 0.0502 | 25.37 21
PA25 0.0751 | 0.0537 | 15.02 14

Table 2. Results of experiment on annotation accuracy.

As shown in Table 1 and Figure 2, adding 10% of noise to seg-
mentation (either uniform or Gaussian) does not cause a considerable
drop in the quality of synthetic speech. As shown in Section 5.2, a
similar amount of errors (corresponding both to the variability in nat-
ural speech data and to errors caused by its automatic processing) is
inherently present in the original speech data. This suggests that these
errors do not influence the quality of speech generated by WaveNet.
On the other hand, any higher values of noise degrade speech quality
significantly.

5.4. Annotation errors

Regarding the relevance of annotation errors, two error levels can be
distinguished:

e confusion of acoustically similar phones (within the same
phonetic category);

e confusion of arbitrary phones (without restriction).

We used notation PSz and PAx for experiments/systems with the
confused similar and arbitrary phones, respectively, where x denotes
the percentage of errors.

Table 2 and Figure 4 show the results of this experiment, where
the natural voice and the baseline system are referred to as NV and
BL, respectively. Small errors could be present in the phonetic anno-
tation of speech, but these should be reduced only to a small number
of pronunciation ambiguities within the same phonetic categories.
Any structural errors in annotation could cause a substantial quality
degradation.

5.5. Data reduction

From the original speech data set with 10,000 utterances, several
smaller inclusive subsets containing 2000, 500, and 200 utterances
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Fig. 5. Results of listening test: training data reduction.

System Objective metric | MUSHRA score
fixed dtw mean | median
NV n/a n/a 99.79 100
BL 0.0560 | 0.0422 | 77.97 85
R2000 | 0.0566 | 0.0398 | 72.90 80
R500 0.0582 | 0.0428 | 65.35 70
R200 0.0599 | 0.0452 | 41.10 40

Table 3. Results of experiment on training data reduction.

were gradually selected (a smaller subset was included in the larger);
corresponding systems are denoted as R2000, R500, and R200, re-
spectively.

Results of the experiment with annotation errors are shown in
Table 3 and Figure 5. They show that at least few hours of speech
(approx. 3 hours in the case of 2000 utterances) is necessary to
generate speech of good quality. Some minor quality increase could
be observed when using all available data (14 hours).

6. CONCLUSIONS

This paper has presented experiments which analyzed the robustness
of WaveNet-based speech synthesis to training data. Various amounts
and kinds of noise were added to a high-quality speech corpus to
measure quality degradation of trained WaveNet models. We used
objective measures and MUSHRA listening tests for comparison.

We showed that WaveNet retains high quality even after adding
a small amount of noise (up to 10%) to phonetic segmentation and
annotation. A small degradation of speech quality was observed for
our WaveNet configuration when only 3 hours of training data were
used. It should be noted that it is however likely that the results are
partially dependent on the network configuration (number of layers,
number of neurons, etc.).

It seems there is no need to design and record a new speech
corpus specifically for WaveNet-based speech synthesis since the
speech corpus intentionally built for unit selection could be utilized.

In our future work, we plan to extend the described experiments
to other voices and languages as well. Similar experiments could
also be carried out for unit selection and statistical parametric speech
synthesis methods to get a direct comparison of how the methods are
robust to the source speech data. Low-quality speech voices as those
recorded by non-professional speakers [19, 20] will be examined as
well.
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