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ABSTRACT

This paper presents a SampleRNN-based neural vocoder for statisti-
cal parametric speech synthesis. This method utilizes a conditional
SampleRNN model composed of a hierarchical structure of GRU
layers and feed-forward layers to capture long-span dependencies
between acoustic features and waveform sequences. Compared
with conventional vocoders based on the source-filter model, our
proposed vocoder is trained without assumptions derived from the
prior knowledge of speech production and is able to provide a
better modeling and recovery of phase information. Objective and
subjective evaluations are conducted on two corpora. Experimental
results suggested that our proposed vocoder can achieve higher
quality of synthetic speech than the STRAIGHT vocoder and a
WaveNet-based neural vocoder with similar run-time efficiency, no
matter natural or predicted acoustic features are used as inputs.

Index Terms— SampleRNN, WaveNet, neural network,
vocoder, statistical parametric speech synthesis

1. INTRODUCTION

Recently, speech synthesis technology [1, 2, 3] plays a more and
more important role in people’s daily life. A speech synthesis system
with high intelligibility, naturalness and expressiveness is a goal
pursued by speech synthesis researchers. In the early days, the
approach of concatenative synthesis [4] was proposed and it can
generate high-quality speech however its flexibility is limited due
to the difficulty of constructing large corpus for unit selection. Later
on, a new approach named statistical parametric speech synthesis
(SPSS) was proposed, which provided a more flexible framework for
speech synthesis by acoustic modeling and vocoder-based waveform
generation. Hidden Markov models (HMMs) [1], deep neural
networks (DNNs) [2], recurrent neural networks (RNNs) [3] and
other deep learning models [5] have been applied to build the
acoustic models for SPSS. Vocoders [6] also play an important role
in SPSS. A vocoder is usually a digital filter which reconstructs
speech waveforms from acoustic parameters. Its performance affects
the quality of synthetic speech significantly.

Various vocoders such as phase vocoder [7], channel vocoder [8]
and spectral envelope estimation vocoder [9] have been proposed in
previous work. More developed vocoders, such as STRAIGHT [10]
and WORLD [11], have been popularly applied in current SPSS
systems. All these existing vocoders are designed based on the
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source-filter model of voice production [12] as shown in Fig. 1(a).
In the source excitation part, the generated excitation is usually a
pulse train for voiced sounds and white noise for unvoiced sounds,
according to the source parameters, such as F0 and V/UV flag. In
the resonance part, the excitation signal passes through a synthesis
filter which imitates the characteristics of vocal tract to generate
the final speech waveforms. However, these vocoders still have
some deficiencies. First, the source-filter model ignores the non-
linear effects in practical speech production. Second, representing
vocal tract filter with low dimensional spectral features, such as
mel-cepstra or line spectral pairs (LSP) leads to the loss of spectral
details and phase information. These deficiencies constraint the
performance of current vocoders and SPSS systems.

Recently, neural network-based speech waveform synthesizers,
such as WaveNet [13] and SampleRNN [14], have been proposed
and demonstrated impressive performance. In WaveNet [13], the
distribution of each waveform sample conditioned on previous
samples and additional conditions was represented using a neural
network with dilated convolutional neural layers and residual ar-
chitectures. Some variants such as fast WaveNet [15] and parallel
WaveNet [16] were then proposed to improve the efficiency of gener-
ation. Different from WaveNet, SampleRNN [14] adopted recurrent
neural layers with a hierarchical structure for unconditional audio
generation. WaveNet-based speaker-dependent neural vocoders
have been proposed and outperformed conventional vocoders, such
as STRAIGHT [17, 18, 19]. However, building vocoders based on
conditional SampleRNNs has not yet been thoroughly investigated.

Therefore, this paper presents a SampleRNN-based neural
vocoder for SPSS. A conditional SampleRNN architecture
composed of gated recurrent unit (GRU) layers and feed-forward
(FF) layers is built to generate waveform sequences from input
acoustic parameters. Different tiers in a conditional SampleRNN
operate at different temporal resolution so as to efficiently capture
long-span dependencies between input acoustic features and output
waveform sequences. Similar to the WaveNet-based neural vocoder,
our proposed vocoder is able to model the nonlinear effects during
speech production without dependency on the conventional source-
filter model, and to preserve the phase information of natural speech
by using waveform samples directly for model training. Both of
them can be considered as the instances of neural vocoders shown
in Fig. 1(b). Experimental results show that our proposed vocoder
can achieve higher quality of synthetic speech than STRAIGHT and
a WaveNet-based neural vocoder with similar run-time efficiency.

This paper is organized as follows. In Section 2, we briefly
review the basic unconditional SampleRNN model and describe
the details of our proposed SampleRNN-based vocoder. Section 3
reports our experimental results. Conclusions are given in Section 4.
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Fig. 1. The comparison between (a) a conventional vocoder and (b)
a neural vocoder.

2. SAMPLERNN-BASED NEURAL VOCODER

2.1. Basic unconditional SampleRNN

An unconditional SampleRNN [14] is a waveform generator in an
autoregressive manner which models the probability of a sequence
of waveform samples x = [x1, x2, . . . , xT ] as the product of the
probabilities of each sample conditioned on all previous samples as

p(x) =

T∏
t=1

p(xt|x1, . . . , xt−1). (1)

The structure of a basic unconditional SampleRNN is composed
of GRU layers and FF layers as shown by the solid lines in Fig. 2.
These GRU and FF layers form a hierarchical structure of multiple
tiers and each tier operates at a specific temporal resolution. The
bottom tier (i.e. Tier 1 in Fig. 2) deals with individual samples
and outputs sample-level predictions. Each higher tier operates on a
lower temporal resolution (i.e. dealing with more samples per time
step). Each tier conditions on the tier above it except the top tier.

Assume an unconditional SampleRNN has K tiers in total (e.g.
K = 3 in Fig. 2). The k-th tier (1 ≤ k ≤ K) operates on non-
overlapping frames composed of L(k) samples. In Fig. 2, we set
L(3) = 8, L(2) = 2, and L(1) = 1. The range of time step at the k-
th tier, t(k), is determined by L(k). Denoting the input waveforms as
x = [x1, x2, . . . , xT ] and assuming that L represents the sequence
length of x after zero-padding so that L is divisible by L(K), we can
get

t(k) ∈ T (k) = {1, 2, . . . , L

L(k)
}, 1 ≤ k ≤ K, (2)

Furthermore, the relationship of temporal resolution between them-
th tier and the n-th tier (1 ≤ m < n ≤ K) can be described as

T (n) = {t(n)|t(n) = d t(m)

L(n)/L(m)
e, t(m) ∈ T (m)}, (3)

where d·e represents the operation of rounding up. It can be observed
from (3) that one time step of the n-th tier corresponds toL(n)/L(m)

time steps of the m-th tier.
The frame input at the k-th tier (1 < k ≤ K) and the t-th time

step can be written by framing operation as

f
(k)
t = [xL(K)+(t−2)L(k)+1, . . . , xL(K)+(t−1)L(k) ], t ∈ T (k).

(4)
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Fig. 2. The structure of a SampleRNN-based neural vocoder, where
concentric circles represent GRU layers and inverted trapezoids
represent FF layers. The solid lines represent the basic unconditional
SampleRNN structure [14] and the dotted lines represent the
conditional tier added for building a SampleRNN-based neural
vocoder.

Particularly, for the bottom tier (i.e. k = 1), the individual sample
xt is first mapped into a real-valued vector et by an embedding layer
and then used as the frame input. The non-overlapping frame size
L(1) is set to 1 fixedly and the frame input is

f
(1)
t = [eL(K)−L(2)+t, . . . , eL(K)+t−1], t ∈ T

(1). (5)

For the non-top tiers (i.e., 1 ≤ k < K), the input of GRU layers
or FF layers is a linear combination of the frame input f (k)

t and
the conditioning vector d(k+1)

t coming from the output of the GRU
layers in the above tier. Then, the GRU units update their hidden
states h(k)

t based on the hidden states of previous time step h
(k)
t−1 and

the input at current time step. At last, the FF layers with a softmax
activation function at the last layer generate a probability distribution
of the current sample conditioned on the previous samples. At
synthesis time, this conditional distribution is used to determine the
sample value at each time step.

2.2. SampleRNN-based neural vocoder

The proposed SampleRNN-based neural vocoder is built based on
the conditional form of a SampleRNN which models the probability
of a sequence of waveform samples x = [x1, x2, . . . , xT ] as
the product of the probabilities of each sample conditioned on all
previous samples and a sequence of acoustic features c as

p(x|c) =
T∏

t=1

p(xt|x1, . . . , xt−1, c). (6)

Since the temporal resolution of the acoustic features is much
lower than waveform samples, this paper proposes to construct the
conditional SampleRNN by adding a conditional tier on the top of
an unconditional SampleRNN as shown by the dotted lines in Fig.
2. With the help of the hierarchical structure, the SampleRNN-
based neural vocoder can avoid the temporal resolution adjustment
in WaveNet-based neural vocoders [17, 18]. In Fig. 2, we setK = 4
and L(4) = 80 which corresponds to 5ms frame shift of acoustic
features for 16kHz sampling rate. Equation (2) and (3) can also be
applied here. For the conditional tier, L(K) donates the frame shift
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of acoustic features and the frame input is

f
(K)
t = [ct1, . . . , c

t
d], t ∈ T (K), (7)

where [ct1, . . . , c
t
d], t ∈ T (K) are the t-th frame acoustic features

for predicting waveform samples [xtL(K)+1, . . . , x(t+1)L(K) ] and d
represents the dimension of the acoustic features (d = 43 in Fig.
2). Equation (4) and (5) can also be applied for intermediate tiers
(1 < k < K) and bottom tier (k = 1) respectively.

2.3. Model training and waveform generation

At the training stage, the waveform samples are first quantized to
discrete values by µ-law [20]. The sequence of quantized waveform
samples are used as the output of the network. The sequence of
acoustic features together with history waveform samples are used
as the input of the network. The network is trained to minimize
the cross-entropy between the natural and predicted distributions of
waveform samples.

At the generation stage, the waveform samples are generated
in an autoregressive manner. Each sample is generated based
on its corresponding acoustic features and previous samples by
stochastically sampling its predicted conditional distribution. After
one sample is predicted, it is fed back into the network to predict the
next one. At last, the generated samples are processed by inverse
µ-law mapping to get the final waveforms.

3. EXPERIMENTS

3.1. Experimental conditions

Two speech synthesis corpora were used in our experiments. One
was a Chinese corpus with 1000 utterances from a female speaker.
Another was an English corpus with 1000 utterances randomly
selected from the recordings of the male speaker bdl in CMU-
ARCTIC databases [21]. The waveforms of both corpora had
16kHz sampling rate and 16bits resolution. For each speaker, we
chose 800 and 100 utterances to construct the training set and
validation set respectively, and the remaining 100 utterances were
used as the test set. The acoustic features at each frame were 43-
dimensional including 40-dimensional mel-cepstra, an energy, an
F0 and a V/UV flag. The natural acoustic features were extracted
by STRAIGHT and the window size was 25ms and the window
shift was 5ms. For SPSS, a bidirectional LSTM-RNN acoustic
model [3] having 2 hidden layers with 1024 units per layer (512
forward units and 512 backward units) was trained to predict
acoustic features from linguistic features for experiments. The input
linguistic context features were 566-dimension for Chinese and 425-
dimension English. The output of the acoustic model contained
the acoustic features together with their delta and acceleration
counterparts, which were total 127 dimensions (the V/UV flag had
no dynamic components). Finally, the predicted acoustic features
were generated from the output by maximum likelihood parameter
generation (MLPG) algorithm.

Three vocoders were compared in our experiments. The descrip-
tions of these vocoders are as follows and all settings below were
determined by model performance on the validation set.

• STRAIGHT: The conventional STRAIGHT vocoder. At
synthesis time, the spectral envelope at each frame was first
reconstructed from input mel-cepstra and frame energy, and
then used to generate speech waveforms together with input
source parameters (i.e., F0 and V/UV flag) [10].

Table 1. Comparison of classification accuracy (denoted by ACC)
and cross entropy (denoted by CE) between the WaveNet-based and
the SampleRNN-based neural vocoder on the test set of two corpora.

Chinese female English male
WaveNet SampleRNN WaveNet SampleRNN

ACC(%) 19.77 20.59 14.16 14.51
CE 2.7427 2.6983 3.2304 3.1570

• WaveNet: A WaveNet-based neural vocoder. The built model
had 40 dilated casual convolution layers which were divided
into 4 convolution blocks. Each block contained 10 layers and
their dilation coefficients were {20, 21, 22, . . . , 29}. For the
residual architectures, the number of residual channels was
128 and the number of skip channels was 256. The waveform
samples were quantized by 10-bit µ-law. An Adam optimizer
[22] was used to update the parameters to minimize the cross-
entropy. The average time for generating one second speech
was 101.29s on a single Tesla K40 GPU using the TensorFlow
[23] framework for implementation.

• SampleRNN: Our proposed SampleRNN-based neural
vocoder. The built model was composed of 4 tiers with
two FF layers in Tier 1 and one GRU layer in Tier 2,3
and 4. Both the GRU layers and the FF layers had 1024
hidden units and the embedding size was 256. We set
L(4) = 80, L(3) = 8, L(2) = 2 and L(1) = 1 as shown in
Fig. 2. The optimization method and waveform quantization
method were the same as that of the WaveNet-based neural
vocoder mentioned above. Truncated back propagation
through time (TBPTT) algorithm was employed to improve
the efficiency of model training and the truncated length
was set to 480. Under the same hardware and software
environments as the WaveNet-based neural vocoder, the
average time consumed for generating one second speech
was 91.89s for the SampleRNN-based neural vocoder, which
was slightly faster than the WaveNet-based one.

3.2. Objective evaluation

We first compared the performance of the trained models in the
WaveNet-based and the SampleRNN-based vocoders using two
metrics. One was the accuracy of classifying waveform sample
into quantization levels, which was calculated by imitating the
training process and assuming that the historical input samples were
all natural and each output sample was obtained by selecting the
quantization level with maximum posterior probability. Another
was the average cross entropy calculated between the original and
predicted conditional distributions of output samples. The results of
these two metrics calculated on the test sets of the two corpora are
listed in Table 1. We can see that our proposed SampleRNN-based
neural vocoder was slightly better than the WaveNet-based one in
both accuracy and cross entropy.

Then, we compared the distortions between natural speech
and the speech reproduced by the three vocoders listed in Section
3.1. Four metrics in previous work [17] were adopted here, in-
cluding signal-to-noise ratio (SNR) which reflected the distortion
of waveforms, mel-cepstrum distortion (MCD) which described
the distortion of mel-cepstra, RMSE of F0 which reflected the
distortion of F0 (denoted by F0-RMSE), and V/UV error which
was the ratio of the number of unmatched V/UV frames between
original and synthesized speech to the number of total frames.
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Table 2. Comparison of distortion among STRAIGHT, WaveNet-
based neural vocoder and SampleRNN-based neural vocoder on the
test set of the Chinese corpus.

STRAIGHT WaveNet SampleRNN
SNR(dB) 2.4994 4.7093 5.1987
MCD(dB) 1.5744 1.6919 1.4950

F0-RMSE(cent) 20.6821 14.9475 11.4926
V/UV error(%) 2.9172 3.5552 3.1725

Table 3. Comparison of distortion among STRAIGHT, WaveNet-
based neural vocoder and SampleRNN-based neural vocoder on the
test set of the English corpus.

STRAIGHT WaveNet SampleRNN
SNR(dB) 1.3858 4.3741 4.3404
MCD(dB) 1.5239 1.7491 1.9512

F0-RMSE(cent) 24.9766 20.1244 19.9917
V/UV error(%) 4.3922 5.2266 4.5458

STRAIGHT was used to extract acoustic features from both original
and reproduced speech waveforms for calculating all these metrics.
The results on the test sets of the two corpora are listed in Table
2 and 3 respectively. It is obvious that the STRAIGHT vocoder
achieved the lowest SNR for both speakers due to the neglect of
phase information. On the other hand, the two neural vocoders
restored the shape of waveforms much better because they modeled
and predicted waveform samples directly. Besides, our proposed
SampleRNN-based vocoder achieved the lowest F0-RMSE among
the three vocoders. Regarding with MCD, the results on these two
speakers were inconsistent which needed further investigation. We
should also notice that the performance of the two neural vocoders
on generating waveforms with correct V/UV flags was still not as
good as the STRAIGHT vocoder.

3.3. Subjective evaluation

Several groups of ABX preference tests were conducted on both cor-
pora to compare the subjective performance of different vocoders.1

Not only the acoustic features extracted from natural recordings,
but also the acoustic features predicted from an acoustic model,
were used to reconstruct speech waveforms for evaluation. Here,
the acoustic model was a bidirectional LSTM-RNN which pre-
dicted acoustic features from corresponding linguistic features. In
each subjective test, 20 utterances synthesised by two comparative
vocoders were randomly selected from the test set. Each pair of
generated speech were evaluated in random order. For the tests
on the Chinese corpus, 10 Chinese native speakers were asked to
be the listeners. For the tests on the English corpus, each pair of
synthetic sentences were evaluated by at least 15 English native
listeners on the crowdsourcing platform of Amazon Mechanical
Turk (https://www.mturk.com). The listeners were asked to
judge which utterance in each pair had better speech quality or there
was no preference. In addition to calculating the average preference
scores, the p-value of a t-test was used to measure the significance
of the difference between two vocoders. The subjective evaluation
results are listed in Table 4 and 5.

1Examples of generated speech can be found at http://home.ustc.
edu.cn/˜ay8067/ICASSP_2018/demo.html.

Table 4. Average preference scores (%) on speech quality among
three vocoders using the Chinese corpus, where N/P stands for
“no preference” and p denotes the p-value of a t-test between two
vocoders. “R” stands for using natural acoustic features as input and
“P” stands for using predicted acoustic features as input.

STRAIGHT WaveNet SampleRNN N/P p

R 10.55 – 55.05 34.40 < 0.001
– 9.17 37.16 53.67 < 0.001

P 9.13 – 54.80 36.07 < 0.001
– 10.18 38.89 50.93 < 0.001

Table 5. Average preference scores (%) on speech quality among
three vocoders using the English corpus, where N/P stands for
“no preference” and p denotes the p-value of a t-test between two
vocoders. “R” stands for using natural acoustic features as input and
“P” stands for using predicted acoustic features as input.

STRAIGHT WaveNet SampleRNN N/P p

R 17.06 – 65.29 17.65 < 0.001
– 23.91 39.35 36.74 < 0.001

P 10.88 – 67.35 21.77 < 0.001
– 17.90 42.89 39.21 < 0.001

From these two tables, we can see that our proposed
SampleRNN-based neural vocoder outperformed the conventional
STRAIGHT vocoder significantly in terms of the subjective quality
of synthetic speech on both corpora and using both kinds of input
acoustic features. This result shows the effectiveness of neural
vocoders for improving the naturalness of SPSS. Furthermore,
the SampleRNN-based vocoder also achieved better subjective
performance than the WaveNet-based one. This is consistent with
the objective performance shown in Table 1. One possible reason
is that the SampleRNN-based neural vocoder can make use of all
history information to generate current sample according to the
characteristics of RNNs. However, the receptive field (i.e. the
number of previous samples which can be used as conditions to
generate the current sample) of the WaveNet-based neural vocoder
is fixed and limited. Increasing its receptive field always needs
more layers and leads to higher complexity of model training and
waveform generation.

4. CONCLUSION

In this paper, we have proposed a SampleRNN-based neural
vocoder, which utilizes conditional SampleRNN model to convert
the acoustic features into speech waveforms directly. Different
from conventional vocoders following the source-filter model,
this proposed vocoder adopts nonlinear neural networks with
hierarchical and recurrent architectures to describe the conditional
distribution of waveform samples. At synthesis time, the waveform
samples are generated in an autoregressive manner. Experimental
results show that our proposed vocoder outperforms both the
STRAIGHT vocoder and a WaveNet-based vocoder with similar
run-time efficiency in terms of the subjective quality of synthetic
speech no matter natural or predicted acoustic features are used
as inputs. An important goal of our future work is to improve the
efficiency of the SampleRNN-based neural vocoder since our current
implementation still runs about 90 times slower than real-time. To
study more variants of the conditional SampleRNN structures and
to investigate speaker-independent (SI) modeling of neural vocoder
will also be the tasks of our future research.
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