
AN INVESTIGATION OF SUBBAND WAVENET VOCODER COVERING ENTIRE AUDIBLE
FREQUENCY RANGE WITH LIMITED ACOUSTIC FEATURES

Takuma Okamoto1, Kentaro Tachibana1∗ , Tomoki Toda2,1, Yoshinori Shiga1, and Hisashi Kawai1

1National Institute of Information and Communications Technology, Japan
2Information Technology Center, Nagoya University, Japan

ABSTRACT

Although a WaveNet vocoder can synthesize more natural-
sounding speech waveforms than conventional vocoders with sam-
pling frequencies of 16 and 24 kHz, it is difficult to directly ex-
tend the sampling frequency to 48 kHz to cover the entire human
audible frequency range for higher-quality synthesis because the
model size becomes too large to train with a consumer GPU. For
a WaveNet vocoder with a sampling frequency of 48 kHz with a
consumer GPU, this paper introduces a subband WaveNet archi-
tecture to a speaker-dependent WaveNet vocoder and proposes a
subband WaveNet vocoder. In experiments, each conditional sub-
band WaveNet with a sampling frequency of 8 kHz was well trained
using a consumer GPU. The results of subjective evaluations with
a Japanese male speech corpus indicate that the proposed subband
WaveNet vocoder with 36-dimensional simple acoustic features sig-
nificantly outperformed the conventional source-filter model-based
vocoders including STRAIGHT with 86-dimensional features.

Index Terms— Speech synthesis, vocoder, subband WaveNet,
multirate signal processing, entire audible frequency range.

1. INTRODUCTION

In conventional statistical parametric speech synthesis (SPSS) [1]
and voice conversion (VC) [2], source-filter model-based vocoders
are typically introduced to synthesize speech waveforms from esti-
mated and converted acoustic features that are mainly constructed
from the fundamental frequency and vocal tract spectrums. To im-
prove the synthesized speech quality in conventional SPSS and VC,
sophisticated vocoders [3,4] have been introduced instead of a basic
mel-log spectrum approximate (MLSA) filter with a simple pulse
excitation and cepstrum [5]. Although these vocoders are corpus-
independent, deep learning-based corpus-dependent data-driven ap-
proaches, such as acoustic feature extraction [6], glottal vocoder [7],
and power spectrum reconstruction for vocoded speech [8] have
also been investigated as in deep learning-based acoustic models for
SPSS and VC [9]. However, their synthesized speech quality cannot
reach natural quality because of analysis error and approximations
and assumptions in the vocoders.

WaveNet [10,11], a deep neural network-based raw audio gener-
ative approach, was recently proposed. In text-to-speech synthesis,
WaveNet can directly synthesize raw speech waveforms from lin-
guistic features and outperform state-of-the-art unit selection-based
and SPSS-based speech synthesis systems with sampling frequen-
cies of 16 and 24 kHz [11]. Another raw audio generative model,
SampleRNN [12], has also been proposed. Such models can realize
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end-to-end speech synthesis from texts to raw speech waveforms,
such as Char2Wav [13], Deep Voice [14–16], and Tacotron 2 [17].

In addition, to fuel conventional source-filter model-based
vocoders within a raw audio generative model framework, a WaveNet
vocoder has been proposed [18], which directly synthesizes raw
speech waveforms from acoustic features, and applied to a con-
ventional VC framework [19]. By introducing a noise shap-
ing method [20], it outperformed the conventional STRAIGHT
vocoder [3] with a sampling frequency of 16 kHz [21].

For high-quality synthesis, SPSS systems with a sampling fre-
quency of 48 kHz covering the entire human auditory frequency
range were recently investigated [6,7,14,16,22–24]. Although Deep
Voice first implemented a conditional raw audio generative model
with a sampling frequency of 48 kHz by introducing smaller net-
works than vanilla WaveNet, there is a tradeoff between the model
size and the synthesized speech quality [14]. To train larger models
for high-quality synthesis, GPUs with quite large size memory are
required. Therefore, a consumer GPU runs out of memory and no
longer trains conditional WaveNet models for high-quality synthesis
with a sampling frequency of 48 kHz. Although Deep Voice 3 im-
plemented a WaveNet vocoder with a sampling frequency of 48 kHz,
the network model size and parameters were not disclosed [16].
Therefore, directly extending the conventional WaveNet vocoder is
difficult with sampling frequencies of 16 and 24 to 48 kHz.

For rapid synthesis and improving synthesized speech quality,
a subband WaveNet architecture based on multirate signal process-
ing [25] was proposed [26]. By introducing a square-root Hann
window-based overlapped single-sideband (SSB) filterbank, the
proposed subband WaveNet can accelerate the synthesis speed and
improve the synthesized speech quality more than the fullband
WaveNet since it can improve the prediction accuracy of WaveNet.
Although the effectiveness of the subband WaveNet was only vali-
dated in experiments for unconditional WaveNet and the synthesis
speed problem was solved by Parallel WaveNet [11], the subband
architecture is expected to train conditional WaveNet models with a
sampling frequency of 48 kHz using a consumer GPU.

To confirm the availability of the proposed subband architecture
in conditional WaveNet and achieve a WaveNet vocoder with a sam-
pling frequency of 48 kHz with a consumer GPU, this paper investi-
gates a speaker-dependent subband WaveNet vocoder that covers the
entire human audible frequency range for high-quality synthesis. To
easily apply the proposed subband WaveNet vocoder to the existing
SPSS and VC systems, we introduced lower-dimensional acoustic
features constructed from the fundamental frequency and simple
mel-cepstral coefficients rather than the mel-spectrograms used in
Deep Voice 3 [16] and Tacotron 2 [17] and higher-dimensional
STRAIGHT- and WORLD-based features [13, 22–24]. We also
investigated how the proposed subband WaveNet vocoder with a
sampling frequency of 48 kHz synthesizes speech waveforms us-
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ing acoustic features with such lower sampling frequencies as 16
and 8 kHz to explore the possibility of bandwidth extension. This
investigation will be useful when a speaker-independent subband
WaveNet vocoder can be realized.

2. SPEAKER-DEPENDENT SUBBAND WAVENET
VOCODER

2.1. WaveNet vocoder

A WaveNet vocoder [18,21] models conditional probability distribu-
tion p(x|h) of raw audio waveform x = [x(1), · · · , x(T )], given
acoustic features h, as

p(x|h) =
T∏

t=1

p(x(t)|x(1), · · · , x(t− 1),h) (1)

by a stack of dilated causal convolution layers, which efficiently in-
puts very long audio samples with a few layers. The WaveNet model
outputs a categorical distribution instead of a continuous one over
next sample x(t) with a softmax layer since it is more flexible and
easily models arbitrary distributions, although raw waveform inputs
are typically treated as continuous values. In a vanilla WaveNet, a µ-
law companding defined in G. 711 [27] is introduced and raw audio
waveforms are quantized to 256 possible values.

Acoustic features for vocoders in SPSS and VC are typically an-
alyzed every 5 ms. The time resolution adjustment between speech
waveform x and acoustic features h is then required. In WaveNet
vocoder, a simple approach to match both sequence lengths of x and
h is performed by copying h of each frame by the shift amount of
the analysis window [18, 21].

2.2. Proposed subband WaveNet vocoder

As in a previous subband WaveNet [26], a block diagram of the
proposed subband WaveNet vocoder is described in Fig. 1. In the
training stage, fullband speech waveforms x = [x(1), · · · , x(T )]
with a sampling frequency of fs in the training set are dec-
imated by factor M and decomposed into N subband streams
xn = [xn(1), · · · , xn(T/M)] with short length T/M and low
sampling frequency fs/M by an overlapped SSB analysis filter-
bank. Each subband WaveNet network pn(xn|h) is then separately
and efficiently trained by each subband waveform xn with common
acoustic features h. In the synthesis stage, each subband stream
x̂n = [x̂n(1), · · · , x̂n(T/M)] is simultaneously generated by the
trained network and upsampled by M , and each subband waveform
with a sampling frequency of fs is obtained by an overlapped SSB
synthesis filterbank.

In previous experiments on unconditional subband WaveNet
synthesis [26], each estimated sample x̂n(t) was generated with
original past samples [xn(1), · · · , xn(t − 1)], and the phase shift
between subbands was not a problem. In the conditional subband
WaveNet, on the other hand, a problem does exist since each es-
timated sample x̂n(t) is generated from already estimated past
samples [x̂n(1), · · · , x̂n(t − 1)] and acoustic features h with
random sampling based on pn(xn|h). To compensate the phase
shift between subbands, a maximum correlation-based approach is
introduced. Because the proposed subband WaveNet vocoder in-
troduces an overlapped SSB filterbank, adjacent subbands include
a common frequency component. By using the common frequency
component, a one-half overlap-and-add frame shift-based linear
phase compensation between adjacent subband waveforms is per-
formed sequentially from the low subbands. The analysis window is
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Fig. 1. Block diagram of proposed subband WaveNet vocoder.

a Hann window with length-s samples, and the frame shift length is
s/2 samples. In the i-th frame, the lower subband waveform is win-
dowed as xlow,i, and the higher subband waveform is windowed as
xhigh,i with time-shifted ±q samples that maximize the correlation
between xhigh,i and xi for considering both the adjacent subband
and previous waveforms, where

xi = xlow,i + [x(s/2 + 1)high,i−1, · · · x(s)high,i−1, 0, · · · 0︸ ︷︷ ︸
s/2

].

(2)

Higher subband waveform xhigh,i is then overlap-and-added. All
phase-compensated subband waveforms are finally integrated into
fullband waveform x̂ = [x̂(1), · · · , x̂(T )].

3. EXPERIMENTS

3.1. Experimental conditions

To evaluate the effectiveness of the proposed speaker-dependent sub-
band WaveNet vocoder with a sampling frequency of 48 kHz, we
conducted objective and subjective experiments using a Japanese
male speech corpus recorded with a sampling frequency of 48 kHz.
In the experiments, 5697 (about 3.7 hours) and 100 utterances were
respectively used as the training and test sets [26].

The proposed subband WaveNet vocoder was compared with
a fullband WaveNet vocoder that can be calculated with limited
model parameters using a consumer GPU as well as conventional
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Fig. 2. Frequency response of a square-root Hann window-based
overlapped SSB filterbank with decimation factor M = 6 and divi-
sion number N = 13 for proposed subband WaveNet vocoder.

MLSA [5] and STRAIGHT [3] vocoders with a sampling frequency
of 48 kHz. Fullband and subband WaveNet vocoders were trained
using an Intel Xeon(R) CPU E5-2670 and a single GPU of NVIDIA
GeForce GTX 1080. In the experiments, acoustic features were
analyzed every 5 ms and the length of an analysis Hann window was
25 ms. Fundamental frequency fo, analyzed by an NDF algorithm
implemented in STRAIGHT [28], was used in all the vocoders. For
fullband and subband WaveNet vocoders, the 0-th to 34-th mel-
cepstral coefficients (35-dimensions) were analyzed from a simple
short-time Fourier transform of windowed speech waveforms with
a sampling frequency of 48 kHz and warping coefficient α = 0.55
as a default setting in HTS1. In addition, the bandlimited acous-
tic features were analyzed from downsampled waveforms with
sampling frequencies of 16 and 8 kHz to explore the bandwidth
extension of the proposed subband WaveNet vocoder. The 0-th
to 24-th mel-cepstral coefficients (25-dimensions) and the 0-th to
16-th mel-cepstral coefficients (17-dimensions) were respectively
analyzed for sampling frequencies of 16 and 8 kHz with α = 0.42
and 0.31. In the MLSA vocoder, the 0-th to 49-th mel-cepstral
coefficients (50-dimensions) were obtained from the smooth vocal
tract spectrum analyzed by STRAIGHT in a previous work [22].
In the STRAIGHT vocoder, the 0-th to 59-th mel-cepstral coeffi-
cients (60-dimensions) for the smooth vocal tract spectrum as well
as the 0-th to 24-th mel-cepstral coefficients (25-dimensions) for the
aperiodicity component were analyzed by STRAIGHT [23, 24].

According to the experimental results of unconditional subband
WaveNet [26], a square-root Hann window-based overlapped SSB
filterbank was also introduced for the proposed subband WaveNet
vocoder. In the experiments, decimation factor M was set to 6 and
division number N = 2M + 1 = 13. The length of the analysis
and synthesis prototype FIR filters was 1536 samples. The sampling
frequency of each subband waveform was (48/6 =) 8 kHz, and
each subband WaveNet was easily trained by a consumer GPU. The
frequency response of the filterbank is plotted in Fig. 2. For phase
compensation between subbands, we employed s = 960 and q =
240 in Eq. (2).

In a fullband WaveNet vocoder with a sampling frequency of
48 kHz, 24 dilated causal convolution layers were introduced as {1,
2, 4, · · · , 2048} × 2, whose receptive field length was 4096 ×
2/48000 = 0.170 s. The mini-batch size was 20 k samples (=
0.42 s). All the dilation and residual channels as well as the number
of skip connections were set to 256. These parameters were one of
the limit settings using a GPU of NVIDIA GeForce GTX 1080.

In the proposed subband Wavenet vocoder, we employed 27 di-
lated causal convolution layers as {1, 2, 4, · · · , 256} × 3, whose
receptive field length was 0.192 s, for each subband WaveNet. The
mini-batch size was 20 k samples (= 2.5 s). Both the dilation and

1http://hts.sp.nitech.ac.jp

(a) Original

(b) Fullband WaveNet vocoder (c) Subband WaveNet vocoder

(d) MLSA (e) STRAIGHT

Fig. 3. Spectrograms: (a) test set original speech waveform with a
sampling frequency of 48 kHz, (b) synthesized by fullband WaveNet
vocoder, (c) synthesized by subband WaveNet vocoder, (d) MLSA
vocoder, (e) STRAIGHT vocoder with fullband acoustic features.

residual channels were set to 64. The numbers of skip connections
were set to 64 for the 1st and 2nd bands, 16 for the 3rd to 6th bands,
and 8 for the 7th to 13th bands.

In both the fullband and subband WaveNet vocoders, the num-
ber of parameter updates was 200 k, and an Adam optimization al-
gorithm updated the neural network parameters with a learning rate
of 0.001 as an initial value that was multiplied by 0.5 at all the K
parameter updates. In the fullband and subband WaveNet vocoder
for the 1st to the 4th bands, K = 50 k and for the 5th to 13th bands,
K = 10 k. In the synthesis, a fast generation algorithm was intro-
duced [29].

3.2. Objective evaluations

Figure 3 shows the spectrograms of a test set original speech wave-
form and those generated by fullband and subband WaveNet and
MLSA and STRAIGHT vocoders with fullband acoustic features.
Obviously, the fullband WaveNet cannot correctly generate speech
waveforms especially over 5 kHz, since the number of model param-
eters was insufficient to train WaveNet with a sampling frequency
of 48 kHz. Since the speech quality synthesized by the fullband
WaveNet vocoder was distinctly lower than the other vocoders, we
removed it after the objective and subjective evaluations.
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Table 1. Results of objective evaluations of 100 test set utterances.
SNR [dB] SD [dB] MCD [dB]

MLSA 0.70 ± 0.09 9.70 ± 0.08 0.51 ± 0.03
STRAIGHT 0.90 ± 0.11 9.85 ± 0.09 0.63 ± 0.03

Subband (A. F. 48 k) 4.60 ± 0.13 11.7 ± 0.11 0.68 ± 0.04
Subband (A. F. 16 k) 5.50 ± 0.14 12.1 ± 0.10 0.55 ± 0.03
Subband (A. F. 8 k) 5.30 ± 0.13 12.7 ± 0.09 0.61 ± 0.04

To objectively evaluate the test set speech waveforms, we in-
troduced and defined the signal-to-noise ratio (SNR) and the spec-
tral distortion (SD) between original waveform x(t) and synthesized
x̂(t):

SNR = 10 log10

( ∑T
t=1 x̂(t)

2∑T
t=1(x(t)− x̂(t))2

)
, (3)

SD =
1

A

A∑
a=1

√√√√ 1

F

F∑
f=1

(
20 log10

|X̂(f, a)|
|X(f, a)|

)2

, (4)

where X(f, a) and X̂(f, a) are the short-time Fourier spectrums of
x(t) and x̂(t) in frame a for frequency bin f and A is the total num-
ber of frames. Similar to a previous work [18], we introduced a
linear phase compensation for each frame to calculate the SNR. As
an acoustic feature analysis, the short-time Fourier transform analy-
sis window function was also a Hann window with a frame length of
25 ms and a frameshift of 5 ms. To consider the human auditory per-
ception criterion in the objective evaluation, mel-cepstral distortion
(MCD) was also introduced and defined:

MCD =
10

log 10

√√√√2

B∑
b=1

(c(b)− ĉ(b))2, (5)

where c(b) and ĉ(b) are the b-th mel-cepstral coefficients obtained
from X(f, a) and X̂(f, a) with α = 0.55 and B = 34.

The results of the objective evaluations are shown in Table 1.
Just as in previous results [18], subband WaveNet vocoders achieved
a higher SNR than MLSA and the STRAIGHT vocoders while the
SD and MCD for MLSA were higher than the others since the sub-
band WaveNet vocoders directly generated speech waveforms and
their phase components can be reconstructed.

3.3. Subjective evaluations

To subjectively compare the subband Wavenet vocoder with full-
band and bandlimited acoustic features with MLSA and STRAIGHT
vocoders, mean opinion score (MOS) tests were conducted. In the
subjective evaluation, the equivalent Q value was utilized to pro-
vide reliability for the evaluation based on P. 830 [30]. Modulated
noise reference unit (MNRU) y(t) was first prepared with Q =
15, 20, 25, 30, 35, and 40 dB:

y(t) = x(t) + 10−Q/20x(t)n(t), (6)

where n(t) is Gaussian white noise. Vocoded speech waveforms
were then evaluated by MOS tests. Finally, equivalentQ values were
obtained based on the above MOS scores of MNRU and vocoded
speech. 23 utterances out of the test set were used for each vocoded
and MNRU speech as the evaluation set and presented by head-
phones. As listening subjects, 15 Japanese adult native speakers
without hearing loss evaluated 23× (5 + 6) = 253 utterances.

Fig. 4. Results of MOS and equivalent Q value for subjective evalu-
ations with 15 listening subjects.

The MOS results and the equivalent Q values are plotted in
Fig. 4. First, the statistical analysis of the result indicates that the
proposed subband WaveNet vocoder with 36-dimensional simple
fullband acoustic features significantly outperformed other vocoders
including STRAIGHT with 86-dimensional features. The t-test
result and the equivalent Q value difference between the proposed
subband WaveNet vocoder with fullband acoustic features and
STRAIGHT were respectively p = 7.32 × 10−5 � 0.05 and
1.14 dB. Although the subband WaveNet vocoders with bandlimited
acoustic features synthesized speech waveforms with a sampling
frequency of 48 kHz, their synthesized speech qualities failed to
reach those of the subband WaveNet vocoder with fullband features
and STRAIGHT. The results indicate that a higher frequency com-
ponent of acoustic features is required for high-quality synthesis
covering the entire human auditory frequency range. Consequently,
we validated the availability of the proposed subband architecture in
conditional WaveNet training and synthesis.

4. FUTURE WORK

Although there are many common parameters in each subband in the
experiments, such parameters as the receptive field length will be set
to optimum values in each subband WaveNet for higher-quality syn-
thesis. Experiments using a female speech corpus will also be con-
ducted. Moreover, a method that simultaneously inputs and outputs
all or some subband waveforms with a single network will be inves-
tigated for phase shift compensation between subbands within a neu-
ral network framework instead of the simple maximum correlation-
based phase compensation introduced in the experiments.

5. CONCLUSIONS

For a WaveNet vocoder with a sampling frequency of 48 kHz using
a consumer GPU, this paper proposed a subband WaveNet vocoder
covering the entire human audible frequency range. By introduc-
ing multirate signal processing, each subband WaveNet vocoder was
successfully trained with a consumer GPU. The results of subjec-
tive evaluations using a Japanese male speech corpus showed that
the proposed subband WaveNet vocoder with 36-dimensional simple
fullband acoustic features significantly outperformed conventional
source-filter model-based vocoders including STRAIGHT with 86-
dimensional features.
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