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ABSTRACT

Many modern neural networks use histograms to efficiently model
continuous random variables. This implies that the parametric space
of the multinomial distribution is easier for training large neural net-
works. In applications like generative audio networks, this approach
introduces audible quantization noise to the generated signal. This
work presents a novel probability density function (PDF), referred to
as B-Spline PDF, that is a direct generalization of histograms to con-
tinuous densities while retaining the multinomial parameter space.
The latter uses k-th order B-Splines to ensure continuity up to the
(k − 1)-th order derivative. B-Spline PDF is amenable for neural
network training via closed-form gradients that are easy and fast to
compute. For other applications, one may use a novel algorithm,
referred to as the Expectation algorithm, to efficiently estimate the
model parameters. Further, a novel sample generation algorithm is
derived that is fast and simple. The theoretical results, coupled with
illustrative examples, suggest that B-Spline PDF may directly re-
place histograms in many related applications.
Index Terms: histograms, B-splines, non-parametric statistics, deep
neural networks, generative models, waveform synthesis

1. INTRODUCTION

Recent advances in generative models allow speech and audio signal
synthesis with high quality. Networks such as SampleRNN [1] are
conditional probability models of the current sample given a number
of previous samples conditioned on some application-specific side-
information derived from text. A key characteristic of these proba-
bility models is that they are discrete rather than continuous as one
would expect for audio signals. They model the conditional prob-
ability mass function of the indices of the quantized audio signal.
The indices are constructed using companding (µ-law or A-law) fol-
lowed by uniform quantization.

The advantage of treating a continuous signal as discrete via
quantization is that the model has no assumptions regarding the
global structure of the underlying probability density function
(PDF). However, the overall process of quantization followed by
discrete modelling corresponds to a histogram [2], which is a rather
inefficient model for continuous variables. As a result, audio gener-
ated via SampleRNN using this model contains audible quantization
noise.

The alternative is to construct a mixture of PDF kernels such as
Gaussian, Radial Basis Functions (RBFs), or Logistics. Theoreti-
cally, these mixtures are universal approximators of the underlying
PDF, but practically they do not scale well as the number of model
parameters increases. Training them is much harder than training
histograms, probably due to the more complicated structure of their
parameter space. As a result, especially in neural network training

that involves tuning multiple hyper-parameters, researchers tend to
use either mixture models with few components or histograms [1].

Since histograms are mixture models of rectangular functions,
both paradigms can be seeing as edge-cases of mixture models. His-
tograms are parameterized locally in the sense that each sample af-
fects a portion of the overall PDF support, while kernel mixtures
are parameterized globally in the sense that each sample affects the
whole PDF.

The rigidity of the latter models leads to performance degrada-
tions when the underlying statistics deviate from the model trigger-
ing an increased interest in non-parametric statistics such as kernel
estimators [3, 4]. Unfortunately, the computational cost for kernel
estimators is too high for big-data and neural network training as
they require the computation of a kernel function for each sample.
Workarounds like Radial Basis Function (RBF) networks involve a
two-step procedure that reverts them back to mixture models: first
quantize the source and then center the kernels at the codepoints [4].

As a consequence, modern neural network design is constrained
to use either discontinuous histograms or rigid parametric models
because non-parametric models are not scalable to modern big-data
sizes unless they are re-parameterized, which re-introduces the unde-
sirable rigidity. From the perspective of generative audio networks,
histograms based on softmax distributions tend to work better in
practice than mixture densities [1].

Plausible, but less popular, alternatives blend between paramet-
ric and non-parametric models and are usually referred to as func-
tional models; for example log-spline models and orthogonal series
models. Log-spline models use polynomial splines or B-splines to
model the logarithm of the PDF using variably-spaced knots [5, 6].
Orthogonal series models use an orthogonal transform (e.g. Fourier)
to model the PDF [7, 3]. Both alternatives are quite flexible, more
suitable than histograms to model continuous PDFs but not neces-
sarily scalable to big-data as the lack of corresponding references
implies.

The aim of this paper is to provide a continuous PDF model that
is as versatile as the quantized ones, namely, the histogram. This
work expresses histograms as 0-th degree B-splines in order to ex-
tend them to k-degree B-splines that are continuous up to the (k−1)-
th derivative. The resulting model is a generalization of histograms
that will hereafter be referred to as B-Spline PDF. It corresponds to
successive smoothing of a uniform histogram using k convolutions
with a rectangular function. Unlike log-spline models [5, 6], it mod-
els the PDF and not the logarithm of the PDF and uses uniformly
distributed knots instead of non-uniformly distributed knots. Unlike
the functional models in [3, 5, 6, 7], the parameters of the model
can be multinomial distributions themselves, which renders the B-
Spline PDF model suitable to be a direct replacement of histograms
in many applications that had to quantize continuous variables in or-
der to model them, such as the softmax-based histograms used in
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generative neural networks [1]. This would eliminate the audible
quantization noise in these models.

Section 2 presents published results on companded quantization
using High-Rate theory [8] and some experimental validation of op-
timal companders. Section 3 demonstrates that companded quanti-
zation with multinomial modelling corresponds to a histogram. Sec-
tion 4 generalizes histograms to B-Spline PDFs. Section 5 presents
the gradient of the log-likelihood that can be used for neural-network
training and proposes the Expectation algorithm, a simple iterative
algorithm to efficiently estimate the model parameters that belongs
to the family of Expectation-Maximization algorithms. Section 6
suggests an random generator algorithm for all B-Spline PDFs. Fi-
nally, section 7 concludes the paper.

2. COMPANDED QUANTIZATION

Generative models [1] quantize the 16-bit PCM input audio samples
at 8-bits using companded quantization [8] following the A-law ITU
standard [9]. The standard suggests two closely related compand-
ing functions, A-law and µ-law, that differ largely due to historical
reasons.

The ITU-standard companders A-law and µ-law are effective by
permitting fast implementations but they are not Rate-Distortion op-
timal [8], meaning that they cannot take advantage of knowledge
regarding source statistics. Optimal companders for squared error
distortion metrics can be derived using Bennet’s High-Rate assump-
tions [8].

Let s ∼ f(s) be the audio input signal following the PDF f(·).
Let theP -th power errorDp(s, ŝ) = |s−ŝ|P be the distortion metric
that we want to minimize. Using High-Rate theory assumptions [8],
we can derive the optimal codepoint density λ(s) of a uniform quan-
tizer to be:

λ(s) =
f(s)1/(P+1)∫
f(s′)1/(P+1)ds′

, (1)

which normalizes f1/(P+1) to integrate to one. Since 1/(P + 1) ≤
1.0, formula 1 has a smoothing effect on f(s) that raises the proba-
bility in low-probability areas and decreases the probability in high-
probability areas. This re-arrangement reduces the size of the biggest
quantization cells as P increases because they yield higher dis-
tortions. Thus, the optimal compander x = g(s) that converts
s ∼ f(s) to x ∼ λ(s) is the cumulative codepoint density func-
tion of x ∼ λ(s) [8].

Figure 1 demonstrates the Rate-Distortion curves of several
companders using squared-error distortion. The P = 1, 2, 3 com-
panders are derived to be optimal for the statistics of s under distor-
tion Dp(·, ·). As expected, the best compander overall is the P = 2
one because it corresponds to the evaluation distortion metric. The
interesting part is that the best compander gains as much over the
ITU companders as the later ones gain over no companding (linear
compander). Further, the measured distortion is almost the same as
the one predicted theoretically using High-Rate theory [8]. The ex-
periment was made using the same EN-US single female speaker
corpus as in [10].

Companding is a necessary pre-processing step when we need to
model distributions with infinite support. We will henceforth assume
that the input audio source is the companded audio signal x = g(s)
and not the original s.

Generalizing, companding allows us to handle infinite support
distributions using finite-support ones and provides some justifica-
tion on the use of uniformly distributed codepoints for being opti-
mally distributed in the P -th power sense according to the global

Fig. 1: Rate-Distortion for several companding functions using
squared-error distortion metric.

statistics of our source.

3. THE SOFTMAX-BASED HISTOGRAM

Let xQm,m = 1, ...,M be the M uniformly distributed quantiza-
tion points (codepoints) of x. Let p(m) be the probability of having
the m-th codepoint, following a multinomial distribution fed from
a softmax-based layer of a neural network. The PDF that is used
elsewere [1] to model the statistics of x can be described by the
equation

p0(x) =
M∑

m=1

p(m)K0(
x− xQm

∆
), (2)

where ∆ is the sampling interval of the uniformly spaced codepoints
and K0(·) is the rectangular function

K0(x) =


1 |x| < 0.5

0.5 |x| = 0.5

0 otherwise.
(3)

Equation 2 corresponds to modelling a continuous source using a
codebook and is essentially a histogram. From a statistical perspec-
tive, it would make sense to use the same PDF during synthesis, but
all papers preferred to use the quantized samples xQm according to
p(m) rather than generating x from p0(x) because equation 2 dou-
bles the amount of additive noise in the generated signal. Thus, they
used the following generative PDF:

p0,gen(x) =
M∑

m=1

p(m)δ(x− xQm), (4)

where δ(·) is the Dirac function.

4. GENERALIZING HISTOGRAM AS B-SPLINE PDF

This paper proposes a generalization of the histogram PDF by suc-
cessively smoothing it via convolutions with the rectangular function
K0(·). The smoothed histogram is of the form:

pk(x) =
M∑

m=1

p(m)K′k,m(x), (5)
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where K′k,m is the normalized kernel:

K′k,m(x) =
Kk(

x−xQ
m

∆
)∫ xmax

xmin
Kk(x′−x

Q
m

∆
)dx′

. (6)

The normalized kernel is based on the k-th order kernel Kk(x), de-
fined as k convolutions of the rectangular function with itself:

Kk(x) = ~k
k′=0K0(x), (7)

where ~ is the convolution operator. By definition, the normalized
kernel K′k,m(x) is a valid PDF that integrates to unity within the
support of the random variable x, while the kernel Kk(x) integrates
to unity within [(k − 0.5)∆, (k + 0.5)∆].

Let the support of x be [xmin, xmax]. According to section 2,
for histograms (k = 0) a plausible placement of the quantiza-
tion codepoints (spline knots) is the one that minimizes the mean-
squared-error (MSE): xQm = xmin + ∆(m − 0.5), where ∆ =
xmax−xmin

M−1
. For higher order B-Splines (k > 0) a plausible strat-

egy when there is no prior knowledge of the PDF support would be
to place the first and the last codepoint at xmin and xmax, respec-
tively, in order to ensure that every point in the interval is described
by exactly k + 1 kernels. This strategy suggests the same level of
flexibility for the PDF across the whole support, but can be relaxed
at the benefit of gaining 2 extra histogram bins. Thus, the code-
points can be set uniformly to: xQm = xmin + ∆(m − 1), where
∆ = xmax−xmin

M−1
. This places the first codepoint at xQ1 = xmin

and the last at xQM = xmax.
A closer look at equation 5 reveals that it corresponds to the

basic splines (B-splines) first introduced by Schoenberg [11, 12] in
1946. However, they are not completely unconstrained since their
coefficients are non-negative probabilities p(m), altogether forming
a convex combination.

The 0-th order B-Spline PDF is the well-known histogram, a dis-
continuous function. The 1-st order B-Spline PDF is the continuous
piecewise linear function, with discontinuous derivatives. The 2-nd
order B-Spline PDF is a piecewise quadratic function with continu-
ity up to the 1-st derivative. Extending, the k-th order B-Spline PDF
is a piecewise quadratic function with continuity up to the (k−1)-th
derivative.

5. ESTIMATION

Estimation of the B-Spline PDF parameters can be made by optimiz-
ing the average log-likelihood:

L =
1

N

N∑
n=1

log pk(xn) (8)

where xn, n = 1, ..., N are the N data samples. In the context of a
neural network training, we need the partial derivatives of equation 8
with respect to the parameters p(m):

∂L

∂p(m)
=

1

N

N∑
n=1

K′k,m(xn)∑M
m=1 p(m)K′k,m(xn)

. (9)

Figure 2 demonstrates the result of fitting B-Spline PDFs of
several orders to 10,000 samples drawn from a Gaussian N(0, 1)
distribution using gradient-based maximization of the average log-
likelihood according at equation 9.

It can be clearly seen that improving the order improves the qual-
ity of the fit, while higher order B-splines closely follow N(0, 1).

Fig. 2: B-Spline PDFs of order 0,1,2,3 fitting 10,000 samples drawn
randomly from N(0, 1).

Further, it is interesting to observe that the higher-order B-splines
can capture the peak of the Gaussian even when the peak is lo-
cated in-between the knots. This is an important advantage over his-
tograms, which fail to capture PDF peaks and it is particularly useful
to algorithms that depend on maximum-a-posteriori inference.

In the context of a typical PDF estimator, we can employ the
mixture model interpretation of the B-Spline PDF to construct a very
simple iterative algorithm, the Expectation algorithm, using condi-
tional expectation:

p̂(m) = Ex {p(m|x)} = Ex

{
p(m)p(x|m)

p(x)

}
≈ 1

N

N∑
n=1

p(m)K′k,m(xn)∑
m′ p(m′)K′k,m′(xn)

, (10)

where Ex{·} is the expectation operator over x. The Expectation
algorithm is as follows:

1. Initialize p̂(m) = 1
M

.

2. Iterate p̂(m)← 1
N

∑N
n=1

p̂(m)K′
k,m(xn)∑

m′ p̂(m′)K′
k,m′ (xn)

until conver-
gence.

The latter algorithm is the expectation step of the well-known
Expectation-Maximization algorithm for mixtures with fixed com-
ponents and variable component weights. As such, it has the same
convergence properties.

For the case of k = 0, where the B-Spline PDF corresponds to
the histogram, the kernel K′k,m′(x) is either zero or one:

p(m)K′k,m(x)∑
m′ p(m′)K′k,m′(x)

= 1 (x ∈ Qm) , (11)

where 1(·) is the indicator function and the interval Qm is defined
as:

Qm , [xQm −
∆

2
, xQm +

∆

2
]. (12)

Equation 11 allows us to obtain the expectation in a single step:

p̂(m) =

∑N
n=1 1 (xn ∈ Qm)

N
. (13)
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Fig. 3: Training B-Spline PDFs of order 0,1,2,3 with 1000 N(0, 1)
samples using the Expectation algorithm.

This equation corresponds to the typical frequentistic estimation of
histogram bin probabilities. Therefore, histogram bin counting can
also be seen as the first step of the Expectation algorithm.

Figure 3 shows the convergence of the Expectation algorithm
for B-Spline PDFs of order 0,1,2,3 with 1000 samples drawn from a
N(0, 1) and M = 11 codepoints at locations xQm = −4.0 + (m −
1) ∗ 0.75,m = 1, ..., 11. The initialization was made using the
uniform distribution p(m) = 1/M, for allm. A total of 10 iterations
are displayed, while the evaluation was made in terms of average
log-likelihood. We can observe that the 0-th order B-Spline PDF
converges from the first iteration, as indicated by the non-iterative
nature of equation 13. Further, the higher the order of the kernel, the
more iterations it takes to converge.

6. RANDOM SAMPLING

Drawing samples from a B-Spline PDF is straight-forward; first
we randomly select the generating (normalized) kernel and then
we generate a sample from that kernel. The kernel is selected by
drawing a sample from a multinomial distribution with probabili-
ties p(m),m = 1, ...,M . The sample from the selected kernel
is constructed using the convolution-related property of moment-
generating functions [13]. According to this property and equa-
tion 7, the random variable uk ∼ Kk(·) that follows the k-th kernel
Kk(·) is equal to the sum of K + 1 uniform variables u0 ∼ K0(·):
uk′ =

∑K
k=0 u0. Therefore, the overall algorithm that generates a

random sample x is:
1. m′ = RandomMultinomial{p(1), p(2), ..., P (M)}.
2. x = xQm′ + ∆ ∗

∑k
k′=0 RandomUniform{−0.5, 0.5}.

3. if x /∈ [xmin, xmax] goto Step 2.
The last step ensures that the drawn sample is within the support of
the PDF.

Figure 4 demonstrates the histogram of 500,000 samples gener-
ated from the 1-st order B-Spline PDF estimated in the experiment
in section 5. Evidently, the histogram closely follows the polyline
nature of P1(·).

7. DISCUSSION

This work demonstrates that the statistical modelling performed
by modern generative audio networks corresponds to a uniformly-
spaced histogram applied to the companded audio source. Results

Fig. 4: 1-st order B-Spline PDF and histogram of 500,000 generated
random samples.
from high-rate theory provide some justification to use uniformly-
spaced histograms to model any source, even ones with infinite sup-
port. However, histograms are not suitable models for continuous
random variables. This is tackled by generalizing the uniformly-
spaced histogram to a B-Spline PDF with a predefined finite degree
of continuity: a k-th order B-Spline is continuous up to the k − 1-th
derivative. In fact, histograms can be expressed as 0-th order B-
Splines.

The paper provides a very simple formulation of B-Spline PDFs
as convolutional mixture models; B-Spline PDF is a uniformly-
spaced histogram that is successively smoothed by convolution with
a single rectangular function. The simplicity of this formulation
allows the derivation of an iterative algorithm, the Expectation al-
gorithm, that can be used to estimate the model parameters. The
convergence properties of the Expectation algorithm stem from the
fact that it corresponds to the expectation step of the well-known
Expectation-Maximization algorithm. The algorithm is computa-
tionally efficient and robust in the sense that it lacks the maximiza-
tion step that is frequently hampered by degenerate solutions. Fi-
nally, the convolutional nature of the B-Spline PDF allows us to
construct a simple random sample generator.

The advantage of the continuous B-Spline PDFs (Pk(·), k > 0)
over histograms (P0(·)) is clearly depicted in Figure 2: they can
closely follow the underlying Gaussian despite having exactly the
same number of parameters as histograms.

The fact that researchers choose to use multinomial distributions
to model continuous random variables implies that the complexity
of the parametric spaces of the alternative continuous models makes
training harder. By construction, the B-Spline PDF maintains the
simplicity of the parametric space of the multinomial distribution,
allowing the development of continuous models that can be trained
as efficiently as multinomials.

This paper focused on presenting the theoretical framework of
B-Spline PDFs rather than providing application examples, mainly
due to space limitations. Accordingly, the author chose to defer the
presentation of real world applications to a later publication. Here,
the properties of B-Spline PDFs and the suggested algorithms are
experimentally demonstrated using illustrative examples. These re-
sults suggest that B-Spline PDFs can provide a direct replacement of
histograms in any application.
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