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ABSTRACT

The problem of estimating the a priori signal-to-noise ratio (SNR)
for single-channel speech enhancement is addressed. Similar to the
decision-directed approach we linearly combine the maximum like-
lihood estimate of the a priori SNR with an estimate obtained from
the previous frame. Based on the harmonic model for voiced speech
we propose to smooth the a priori SNR estimate along harmonic tra-
jectories instead of fixed discrete Fourier transform frequency bins.
We interpolate by using a pitch-adaptive zero-padding in order to
obtain the spectral coefficients at harmonic frequencies. The re-
sulting pitch-adaptive decision-directed (PADDi) method increases
the noise attenuation compared to the classical decision-directed ap-
proach and outperforms benchmark methods in terms of speech en-
hancement performance for several noise types at different SNRs,
quantified by objective evaluation criteria.

Index Terms— speech enhancement, a priori snr, decision-
directed, pitch-adaptive

1. INTRODUCTION

Speech enhancement algorithms are often formulated and imple-
mented in the discrete short-time Fourier transform (DSTFT) do-
main by applying a signal-dependent spectral gain function. There
exist various gain functions in the literature such as the Wiener fil-
ter, the minimum mean square error short time spectral amplitude
estimator (MMSE-STSA) [1], or the log spectral amplitude estima-
tor (LSA) [2], to name a few. The vast majority of them have in
common that they rely on the a priori SNR, defined as the ratio of
the speech power spectral density (PSD) and noise PSD, as a key
parameter [3, 4]. Since the a priori SNR is not known in practice, its
estimation is a crucial step in every speech enhancement algorithm
that relies on this parameter.

Since its proposal in 1984, the decision-directed (DD) a priori
SNR estimator [1] has been widely used in speech enhancement
methods. The DD estimator linearly combines the maximum like-
lihood (ML) estimate of the a priori SNR of the current signal
segment with an estimate obtained from the preceding estimated
speech coefficients by a smoothing factor. A thorough analysis of its
mechanism is given in [3], where the smoothing factor is identified
to play a key role in suppressing audible distortions due to the recur-
sive smoothing. Choosing it too small results in unwanted spectral
outliers due to the high variance in the ML a priori SNR estimate,
often perceived as musical noise [4]. On the contrary, if chosen too
large, it may cause distortions of the speech signal [3].

Since the smoothing constant is commonly chosen close to
one, the DD approach introduces one frame delay and the resulting
estimate strongly relies on the speech spectrum estimation in the
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previous frame. However, as a result of onsets, offsets, and gen-
erally time-varying signal characteristics, such as the fundamental
frequency, the instantaneous SNR may abruptly change from one
frame to the next. This renders the DD estimator to be biased and
introduces artifacts which are often perceived as artificial reverbera-
tion [5].

There exist various approaches that take into account the speech
signal’s non-stationarity. For example, Cohen in [6] considers the
correlation of successive speech spectral components yielding a
time-varying and frequency-dependent smoothing factor. Further,
Hendriks et al. proposed to apply an adaptive time segmentation
that, based on a sequence of hypothesis tests, selects which seg-
ments should contribute to the respective SNR estimate [7]. Also,
non-causal estimation of the a priori SNR has been considered as a
strategy to better preserve speech onsets [8]. The study in [9] thor-
oughly analyzes the DD estimator’s capability to preserve speech
onsets in transient conditions and to suppress musical noise.

Taking into account specific speech signal models is a promising
strategy to improve performance despite the aforementioned diffi-
culties. The cepstro-temporal smoothing (CTS) [10] successfully
incorporates knowledge about the harmonic nature of voiced speech
into the a priori SNR estimation. The cepstrum of a speech signal
can be decomposed into regions representing the spectral envelope
(lower quefrency bins) and the harmonic excitation signal, ideally
associated to a single peak in higher quefrency regions. Hence,
given a fundamental frequency estimate, it is possible to selectively
smooth speech related cepstral coefficients with a different smooth-
ing factor than regions that are most likely dominated by noise and
spectral outliers resulting from estimation errors. This selective
smoothing procedure is applied on the ML estimate of the speech
PSD, which is subsequently used to compute the a priori SNR.

Recently, the authors of [11] synthesized the excitation signal in
the cepstral domain in order to obtain an instantaneous estimate of
the a priori SNR. While weak harmonic structure can be preserved,
this approach is also less sensitive to abrupt changes in the acoustic
environment compared to the DD estimator. Finally, Plapous et
al. proposed to regenerate degraded harmonics by introducing a
nonlinearity for refinement of the a priori SNR estimate [5]. To
cope with the delay of one frame introduced by the DD algorithm,
they initialize the a priori SNR estimate with a two-stage procedure
which re-estimates the a priori SNR based on the observation and
the gain of the current time step.

Motivated by the aforementioned studies, in this paper, we re-
visit the DD estimator under the perspective of a harmonic signal
model. More specifically, we propose to smooth the a priori SNR
along harmonic trajectories instead of fixed frequency bins. Hence,
the weighting factor in the DD estimator linearly combines estimates
of the a priori SNR that are related to the same harmonic rather than
a fixed frequency bin. Since the harmonic frequencies are not nec-
essarily a subset of the set of discrete Fourier transform (DFT)
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frequencies, we propose to interpolate to the harmonic frequencies
by applying a pitch-adaptive zero-padding in the time domain. The
resulting pitch-adaptive decision-directed (PADDi) a priori SNR
estimator is evaluated in terms of instrumental measures in combi-
nation with various gain functions and compared to benchmarks.

2. SIGNAL MODEL AND NOTATION

Under the assumption of additive noise, the observed, noise cor-
rupted (noisy) speech signal y(n) is given by y(n) = x(n) + d(n),
where x(n) is the clean speech signal, d(n) is the unwanted noise,
and n is the discrete-time index. In practice, y(n) is divided into
frames of length N and subsequently multiplied with a window
function w(n), i.e., y(n, `) = y(n+`L)w(n), where w(n) is non-
zero only within the interval n ∈ [0, N−1], ` is the frame index, and
L is the frame shift (in samples). Taking the DFT of each windowed
segment yields the well known DSTFT

Y (k, `) =

NDFT(`)−1∑
n=0

y(n, `)e
−j 2πk

NDFT(`)
n
= X(k, `)+D(k, `), (1)

where NDFT(`) is the DFT length at frame `, the frequency in-
dex is given by k ∈ [0, NDFT(`) − 1], and capital letters denote
the frequency domain representations of the corresponding time-
domain signals (represented by lower-case letters). The DFT length
is commonly chosen to be constant, i.e., NDFT(`) , NDFT. The
dependency of NDFT(`) on the frame index ` in Eq. (1) is a key
ingredient of our proposal and will be explained in Section 4.

It is common to estimate the clean speech signal by apply-
ing a multiplicative gain function G(·) on the noisy signal in
frequency domain. Typically, this gain function is a function
of the so-called a priori SNR ξ(k, `) = σ2

x(k, `)/σ
2
d(k, `) as

well as the a posteriori SNR ζ(k, `) = |Y (k, `)|2/σ2
d(k, `), i.e.,

X̂(k, `) = G(k, `, ζ(k, `), ξ(k, `))Y (k, `), where σ2
x(k, `) and

σ2
d(k, `) denote the speech PSD and the noise PSD, respectively.

The hat symbol ·̂ denotes estimates in this paper.

3. THE DECISION-DIRECTED A PRIORI SNR
ESTIMATOR

Given the a posteriori SNR estimate, the ML estimate of the a priori
SNR is given by [1]

ξ̂ML(k, `) = ζ̂(k, `)− 1. (2)

A second estimate of the a priori SNR is obtained from the preceding
frame’s speech estimate [1]

ξ̂`−1(k, `) =
|X̂(k, `− 1)|2

σ̂2
d(k, `− 1)

. (3)

The DD estimator linearly combines the two estimates as follows [1]

ξ̂DD(k, `) = αDDξ̂`−1(k, `) + (1− αDD)max[ξ̂ML(k, `), 0], (4)

where max[·, ·] indicates the maximum operator and αDD ∈ [0; 1] is
the smoothing factor commonly chosen close to one [12].

From Eq. (4), we see that the estimate of the a priori SNR for
specific k=k′ and `=`′, ξ̂DD(k

′, `′) strongly relies on ξ̂`−1(k
′, `′),

which is obtained from the speech estimate X̂(k′, `′−1) of the pre-
ceding frame. However, especially in the case of larger frame shifts,
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Fig. 1. (a): Spectrogram of a speech snippet uttered by a female speaker
taken from [13]. (b) Zoom into a voiced time-frequency region where the
fundamental frequency changes over time. The red solid line indicates the
trajectory of harmonic 14. The green arrows indicate the DD smoothing path.
(c) The same speech snippet as in (a) analyzed with the PADSTFT (K = 12
in Eq. (8)). (d) Now the DD smoothing path at frequency bin k = 168 and
the trajectory of harmonic 14 coincide.

DFT bin k′, which is dominated by speech at frame `′, is not neces-
sarily dominated by speech at frame `′−1 and vice versa.

Basically, this has two reasons. First, onsets and offsets induce
a change in speech presence/absence from one frame to the next
(which is addressed in, e.g., [6, 7]). Second, considering voiced
speech as the summation of harmonically related sinusoids has sim-
ilar consequences. As illustrated in Fig. 1 (a) and (b), one harmonic
does not dominate the same frequency bin for every frame, since the
fundamental frequency changes over time. Hence, assuming that the
a priori SNR is approximately constant along harmonic trajectories,
it is not necessarily ξ̂`−1(k

′, `′) which approximates ξ(k′, `′) best
but potentially any other ξ̂`−1(k, `

′) with k close to k′. In this work,
we are interested in taking this relation into account.

4. THE PROPOSED METHOD

Following the above discussion, we propose to recursively smooth
the a priori SNR estimates along harmonic trajectories instead of
fixed frequency bins. Hence, for successive frames, we seek for
frequency bins that are dominated by the same harmonic. In order
to find potential candidates, we define kh(`), representing the fre-
quency bin k which is closest to the hth harmonic with frequency
fh(`) = hf0(`), i.e.,

kh(`) = argmin
k

∣∣∣k −NDFT(`)
hf0(`)

fs

∣∣∣. (5)

4.1. The pitch-adaptive decision-directed approach

We can simplify Eq. (5) by choosing NDFT(`) dependent on the fun-
damental frequency

NDFT(`) = round
[
K

fs
f0(`)

]
, (6)
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Fig. 2. Proof-of-concept: Demonstrating PADDi on a noisy speech signal mixed at 0 dB global SNR corrupted with white noise. The clean speech signal is a
recording of a female speaker taken from TIMIT saying “By the look of him he wasn’t that far gone.”. (a) Clean speech signal, (b) noisy speech, (c) Wiener
Filter + DD [1], (d) Wiener filter + HRNR [5], (e) Wiener filter + CTS [10], (f) Wiener filter + PADDi.

where K is an integer constant and round[·] denotes the round-
ing operator. The factor K controls the amount of zero-padding in
the DFT. Inserting (6) into (5) renders kh(`) to be independent of

NDFT(`). Further, using K fs
f0(`)

≈ round
[
K fs

f0(`)

]
, we obtain

kh(`) = argmin
k

∣∣∣k − round
[
K

fs
f0(`)

]hf0(`)
fs

∣∣∣
≈ argmin

k

∣∣∣k −Kh∣∣∣
= Kh.

(7)

By applying a pitch-adaptive zero-padding, kh(`) becomes a con-
stant that does not depend on the frame index ` anymore. Hence,
kh(`) is consistently dominated by the same harmonic h and its ar-
gument ` becomes redundant, which is why we drop it in the rest
of the paper. The resulting time-frequency representation is pitch-
adaptive (PA) and we refer to it as PADSTFT.

As a result of spectral leakage, harmonic h not only impacts on
frequency bin kh but on all other frequency bins as well. Under
the assumption that the speech signal is perfectly harmonic and we
know its fundamental frequency, the amount of leakage depends on
the chosen window function only. This means that ideally not only
all frequency bins kh, but also those in-between harmonics, are af-
fected similarly by the harmonics at all time instances.

By applying the decision-directed approach as defined in Eq. (4)
in the PADSTFT framework, obtained by using Eq. (6) in Eq. (1), we
automatically smooth along harmonic trajectories instead of fixed
frequencies as illustrated in Fig. 1, panels (c) and (d). The resulting
estimator is termed pitch-adaptive decision-directed (PADDi).

4.2. The factor K

In principle, the larger we choose the integer factor K, the finer the
resolution of the resulting DFT. However, it is evident that we cannot
select the DFT lengths arbitrarily long if we want to keep the compu-
tational effort reasonable. On the contrary, the DFT length needs to
be at least N samples long to assure no non-zero samples in y(n, `)
are neglected for the computation of Y (k, `). If we constrain the

fundamental frequency of a speech signal to lie within the interval
[f0,min, f0,max] this maps to the following bounds for NDFT(`)

max
[
N,K

fs
f0,max

]
≤ NDFT(`) ≤ K

fs
f0,min

. (8)

Given f0,max and N , for the sake of computational efficiency, we
select the minimum possible value for the factor K, given by

K = df0,max

fs
Ne, (9)

where d·e denotes the ceiling operation.

4.3. Fundamental frequency estimation

Clearly, the proposed algorithm relies on a fundamental frequency
estimate. Any estimation procedure may be applied, we imple-
mented a simple autocorrelation based f0-estimator [14] which
works on a frame-by-frame basis, as explained in the following.

First, the autocorrelation sequence ryy(m, `) (with lag m) of
y(n, `) is computed. In a second step, a peak-picking within the
range m ∈ [fs/f0,max; fs/f0,min] is applied on ryy(m, `) to obtain
an estimate of the fundamental period

T̂0(`) =
1

fs
argmax

m
ryy(m, `). (10)

Given the fundamental period, we easily compute the fundamental
frequency estimate by f̂0(`) = 1/T̂0(`). To avoid abrupt changes
in the DFT lengths (which yield audible artifacts), we set f̂0( )̀ =

f̂0(`−1) if f̂0( )̀ /∈ [f̂0(`−1)−30Hz; f̂0(`−1)+30Hz].

4.4. Signal reconstruction

At frame `= `′, due to the circular convolution of y(n, `′) with the
inverse DFT of G(k, `′), the inverse DFT of X̂(k, `′) may result
in a time domain signal x̂(n, `′) with support NDFT(`

′) > N . By
applying the window function w(n) of length N we neglect all non-
zero samples of x̂(n, `′) for n ≥ N . As a consequence, we can apply
the MMSE synthesis routine for signal reconstruction from [15] if
the window is chosen adequately, i.e.,

∑∞
`=−∞ w

2(`L− n) = 1.
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Fig. 3. SSDRseg versus NAseg averaged over all noise types for the DD a
priori SNR estimator and PADDi combined with (×) Wiener filter, (◦) LSA
[2] , (4) jMAP [16] and (�) MMSE-STSA [1].

5. EXPERIMENTS

The speech samples for the evaluation were taken from the test set
of the TIMIT core database [13], which consists of 192 utterances.
The speech signals were mixed with white and babble noise taken
from the NOISEX-92 database [17] and rain noise (representing
an impulsive noise type) taken from [18]. We chose SNRs between
−10 dB and 15 dB in 5 dB steps and followed the mixing convention
recommended in [19]. All signals were sampled at 16 kHz.

For noise PSD estimation we used the estimator from [20] for
all algorithms. In order to make the resulting noise PSD estimate
applicable in the PADSTFT framework we linearly interpolate it
to the frequency bins of the PADSTFT. In the implementation, we
initialized all frequency domain vectors as zero vectors of dimension
round[Kfs/f0,min]× 1, i.e., all entries with index k ≥ NDFT(`) are
zero. The parameters of the f0-estimator were set to f0,min = 90Hz
and f0,max = 350Hz, resulting in K = 12 according to Eq. (9). As
window function we chose a square-root hamming window for all
algorithms and set the frame length to 32ms (N = 512), with 50%
overlap. All gain functions were floored to have a minimum value
of Gmin = −20 dB. The weighting factor of the DD based methods
was set to αDD = 0.98.

Since the actual smoothing characteristics of the overall speech
estimator strongly depend on the spectral gain function applied [9],
we compared the classical DD and PADDi for various gain func-
tions. We analyzed the segmental noise attenuation (NAseg) together
with the segmental speech-to-speech distortion ratio (SSDRseg) as
explained in [21]. These measures give an insight into details of
the respective suppression mechanism. The gain functions applied
are the Wiener Filter (WF), the log-spectral short time spectral
amplitude estimator (LSA) [2], the super-Gaussian joint maximum
a posteriori amplitude and phase estimator (jMAP) [16], and the
MMSE-STSA estimator [1].

In order to assess PADDi compared to other approaches for
a priori SNR estimation, we report segmental SNR (SNRseg) and
perceptual evaluation of speech quality (PESQ) [22]. As bench-
marks we include cepstro-temporal smoothing (CTS) [10] and the
harmonic regeneration noise reduction (HRNR) algorithm [5]. Both
approaches also consider a harmonic model for speech, yet incorpo-
rating it in a different fashion.

5.1. Proof-of-concept

Fig. 2 illustrates the mechanism of our proposal in terms of a proof-
of-concept. While the DD approach yields spurious spectral peaks
that can be associated to musical noise [12], the PADDi method does
not produce such artifacts1. The CTS algorithm [10] preserves the

1Listening examples of the proposed method can be found on [23].
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Fig. 4. ∆-improvement of SNRseg and PESQ for the different a priori SNR
estimators. Reported as improvement over the decision-directed approach for
SNRseg and over the noisy observation for PESQ.

harmonic structure of the original speech signal very well, however,
this is at the expense of reduced overall noise reduction compared
to PADDi. The HRNR algorithm [5] also successfully suppresses
isolated spectral peaks. Compared to CTS and PADDi, the spectral
fine structure appears to be smeared along frequency.

5.2. Objective evaluation

Fig. 3 displays the outcome for the NAseg and the SSDRseg analysis.
PADDi consistently brings more noise suppression while the speech
distortion level is preserved compared to the DD approach.

Fig. 4 shows the comparison to other a priori SNR estimation
approaches. Across all SNRs and noise types, PADDi yields an
increased or similar SNRseg compared to the benchmark methods.
Except for the impulsive rain noise (where HRNR performs worse
than the other benchmarks), all methods perform similar in terms of
PESQ.

6. CONCLUSION

In this paper we proposed a new alternative to the well known
decision-directed a priori SNR estimator. The core of our pro-
posal is to change the smoothing path from fixed frequencies to
harmonic trajectories. Since this requires interpolation to har-
monic frequencies, we apply a pitch-adaptive zero-padding in the
time domain. Applying the decision-directed approach in the so-
obtained PADSTFT framework automatically yields a smoothing
path along frequency bins that are dominated by the same har-
monics. Compared to the classical decision-directed approach, the
resulting pitch-adaptive decision-directed (PADDi) approach comes
with more noise suppression while preserving the level of speech
distortions. The effectiveness of PADDi in terms of speech enhance-
ment performance is demonstrated by instrumental metrics. While
the current study examines the idea of a priori SNR estimation in a
pitch-adaptive framework, future work should be directed towards
extending it to other parameter estimation tasks that arise in speech
enhancement algorithms such as noise PSD estimation.
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