
ROBUST SPEECH RECOGNITION USING GENERATIVE ADVERSARIAL NETWORKS

Anuroop Sriram∗, Heewoo Jun∗, Yashesh Gaur, Sanjeev Satheesh

Baidu Research, Sunnyvale, CA, USA

ABSTRACT

This paper describes a general, scalable, end-to-end frame-
work that uses the generative adversarial network (GAN)
objective to enable robust speech recognition. Encoders
trained with the proposed approach enjoy improved invari-
ance by learning to map noisy audio to the same embedding
space as that of clean audio. Unlike previous methods, the
new framework does not rely on domain expertise or strong
assumptions, and directly encourages robustness in a data-
driven way. We show the new approach improves simulated
far-field speech recognition of vanilla sequence-to-sequence
models without specialized front-ends or preprocessing.

Index Terms— automatic speech recognition, robust
speech recognition, generative adversarial networks

1. INTRODUCTION

Automatic speech recognition (ASR) is becoming increas-
ingly more integral in our day-to-day lives enabling virtual
assistants and smart speakers like Siri, Google Now, Cortana,
Amazon Echo, Google Home, Apple HomePod, Microsoft
Invoke, Baidu Duer and many more. While recent break-
throughs have tremendously improved ASR performance [1,
2] these models still suffer considerable degradation from rea-
sonable variations in reverberations, ambient noise, accents
and Lombard reflexes that humans have little or no issue rec-
ognizing.

Traditional robust ASR literature models the noisy pro-
cess from first principles, but these hand-engineered front-
ends [3, 4] do not generalize well on other modalities in prac-
tice. These problems can be solved by training models on a
large volume of labeled data with these effects. However, for
non-stationary processes, such as accents, high fidelity data
augmentation is infeasible, and in general, high quality la-
beled datasets are expensive and time-consuming to collect.
Data driven approaches without strong supervision are ideal
for scalable robust training, because the effects can be mod-
eled from the unsupervised data itself.

In this work, we employ the generative adversarial net-
work (GAN) framework [5] to increase the robustness of
seq-to-seq models [6] in a scalable, end-to-end fashion. The
encoder component is treated as the generator of GAN and

∗ equal contribution.

is trained to produce indistinguishable embeddings between
noisy and clean audio samples. Because no restricting as-
sumptions are made, this new robust training approach can
in theory learn to induce robustness without alignment or
complicated inference pipeline and even where augmentation
is not possible. We also experiment with encoder distance ob-
jective to explicitly restrict the embedding space and demon-
strate that achieving invariance at the hidden representation
level is a promising direction for robust ASR.

The rest of the paper is organized as follows. Section 2
documents related work. Section 3 defines our notations and
details the robust ASR GAN. Section 4 explains the experi-
mental setup. Section 5 shows results on the Wall Street Jour-
nal (WSJ) dataset with simulated far-field effects. Section 6
concludes this work.

2. RELATED WORK

Robust ASR has fairly deep roots in signal processing, but
these traditional approaches [3] typically have strong priors
that make it difficult to incorporate new effects. Methods like
the denoising autoencoder (DAE) [7] on the other hand can
learn to recover the original audio from a corresponding noisy
version [8] without domain knowledge. Such methods have
been shown to improve perceptual quality of the produced
speech and to a certain extent the final ASR performance [9].
Even though gain in ASR performance from DAE is rather
limited given its amount of computation, its data driven nature
is very appealing.

The problem with autoencoders is that it attempts to re-
construct all aspects of the original audio, including many
features that are not important for the end task, such as the
voice and accent of the speaker, background noises, etc. In
fact, ASR systems learn to remove such artifacts of the input
audio as they can hinder speech recognition performance.

This problem can be alleviated by training models with
an auxiliary objective that measures sensitivity to changes in
the bottleneck layer. Intuitively, we want the ASR model to
learn robust representations suitable for the end task automat-
ically from data. One simple such heuristic is the embedding
distance between clean and noisy speech, but minimizing this
requires paired training audio and alignments. Variable speed
can make alignments even trickier; expensive methods like
dynamic time warping [10] may be needed.
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The domain adversarial neural network (DANN) [11]
solves this problem by minimizing the domain divergence.
This involves introducing a secondary task of classifying
between source and target domains, and training the feature
extractors to produce embeddings that are indistinguishable
by the classifier. Because the objective can be computed
from a scalar summary of the input and the domain label,
such methods can leverage unaligned, unpaired, and unsuper-
vised data. [12] showed this technique indeed improves ASR
robustness to ambient noise.

Similarly, the generative adversarial network (GAN) [5]
where the generator synthesizes increasingly more realistic
data in attempt to fool a competing disctiminator can be
used to enable robust ASR. [13] treats encoding speech as
a generative process and achieves invariance by confusing
the domain critic. Multi-task adversarial learning certainly
enhances ASR robustness in a data-driven way, but existing
work is applied to a more traditional hybrid speech recog-
nition pipeline. They are unable to take advantage of more
recent end-to-end frameworks like sequence-to-sequence
models with attention [6].

In general, adversarial methods are quite difficult to train.
[14] explains that the Jensen-Shannon divergence’s strong
topology makes gradients not always useful. Instead, the
Wasserstein distance also known as the Earth-Mover distance
was proposed to mitigate unstable training. This method was
shown to make GAN training more robust to architectural
choices and other prior art.

3. ROBUST ASR

3.1. Encoder distance enhancer

As motivated in Section 2, inducing invariant representations
to noise via multitask learning naturally improves ASR ro-
bustness. The end task objective ensures that only relevant
features to recognition are learned, while a sensitivity mea-
sure encourages perturbed representations to be similar to
those of clean samples. We validate this idea with a straight-
forward heuristic that measures the distance between clean
and noisy encoder embeddings.

The system works as follows: the same encoder, g, is ap-
plied to the clean audio x and the corresponding noisy audio
x̃ to produce hidden states z = g(x) and z̃ = g(x̃). The de-
coder, h, models the conditional probability p(y|x) = p(y|z)
and is used to predict the output text sequence one character
at a time. This architecture is described in Figure 1. The en-
tire system is trained end-to-end using a multi-task objective
that tries to minimize the cross-entropy loss of predicting y
from x̃ and the normalized L1−distance between z and z̃:

E(x,y)∼D

[
H(h(z̃), y) + λ

‖z − z̃‖1
‖z‖1 + ‖z̃‖1 + ε

]
. (1)

Fig. 1. Architecture of the enhancer models introduced in this
paper. The discriminator loss can be L1-distance or WGAN
loss. The entire model is trained end-to-end using both the
discriminator loss and the cross-entropy loss. We use RIR
convolution to simulate far-field audio. It’s also possible to
train this model with the same speech recorded in different
conditions.

3.2. WGAN enhancer

In our experiments, we found the encoder distance penalty
to yield excellent results but it has the disadvantage that the
encoder content between clean and noisy audio has to match
frame for frame. Instead, employing the GAN framework, we
have a discriminator output a scalar likelihood of the entire
speech being clean, and train the encoder to generate embed-
dings that are indistinguishable by the discriminator.

In this paper, we use the Wasserstein GAN (WGAN) [14].
Following the notations of WGAN, we parametrize the seq-
to-seq and discriminator models with θ and w respectively.
The overall architecture depicted in Figure 1 remains the
same, but the encoder distance in (1) is now replaced with the
dual of Earth-Mover (EM) distance

max
w∈W

{Ex [fw(gθ(x))]− Ex̃,ε [fw(gθ(x̃+ ε)]} , (2)

whereW is a set of clipped weights to ensure the duality holds
up to a constant multiple [14].

We treat the embedding of the clean input x as real data
and the embedding of x̃, which can either be augmented from
x or drawn from a different modality, as being fake. And so,
as GAN training progresses, the encoder gθ should learn to
remove extraneous information to ASR to be able to fool the
discriminator. In practice, we found that including a random
Gaussian noise ε to the input of the generator helps improve
training. This is most likely because there are a limited num-
ber of impulse responses and a small perturbation prevents the
discriminator from easily memorizing all augmentation pat-
terns. Also, weights in the parameter setW should be clipped
to ensure the duality of (2) holds up to a constant multiple
[14]. The adapted WGAN training procedure is detailed in
Algorithm 1.
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Data: ncritic, the number of critic per robust ASR updates. c, the clipping parameter. m,m′, the batch sizes.
1 while θ has not converged do
2 for t = 1, . . . , ncritic do
3 Sample {(x(i), y(i)) ∼ D}mi=1 a batch of labeled speech data.
4 Sample {x̃(i)}m′

i=1 by augmentation or from a noisy dataset
5 Sample noise {ε(i)}m′

i=1.
6 gθ ← ∇θ

[
1
m

∑m
i=1H(hθ(gθ(x

(i))), y(i))
]

7 θ ← θ − Adam(θ, gθ)

8 gw ← ∇w
[

1
m

∑m
i=1 fw(gθ(x

(i)))− 1
m′

∑m′

i=1 fw(gθ(x̃
(i) + ε(i)))

]
9 w ← w + RMSProp(w, gw)

10 w ← clip(w,−c, c)
11 end
12 Sample {(x(i), y(i)) ∼ D}mi=1 a batch of labeled speech data.
13 Sample {x̃(i)}m′

i=1 by augmentation or from a noisy dataset
14 Sample noise {ε(i)}m′

i=1.

15 gθ ← ∇θ
[

1
m

∑m
i=1H(hθ(gθ(x

(i)), y(i))− λ 1
m′

∑m′

i=1 fw(gθ(x̃
(i) + ε(i)))

]
16 θ ← θ − Adam(θ, gθ)

17 end
Algorithm 1: WGAN enhancer training. Adam and RMSProp were used to update the seq-to-seq and critic models. If data
augmentation is possible, training the seq-to-seq model with augmentation in lines 6 and 15 can further improve results.

4. EXPERIMENTAL SETUP

4.1. Corpora and Tasks

We evaluated the enhancer framework on the Wall Street Jour-
nal (WSJ) corpus with simulated far-field effects. The dev93
and eval92 sets were used for hyperparameter selection and
evaluation respectively. The reverberant speech is generated
with room impulse response (RIR) augmentation as in [15],
where each audio is convolved with a randomly chosen RIR
signal. The clean and far-field audio durations are kept the
same with valid convolution so that the encoder distance en-
hancer can be applied. We collected 1088 impulse responses,
using a linear array of 8 microphones, 120 and 192 of which
were held out for development and evaluation. The speaker
was placed in a variety of configurations, ranging from 1 to 3
meters distance and 60 to 120 degrees inclination with respect
to the array, for 20 different rooms. Mel spectrograms of 20
ms samples with 10 ms stride and 40 bins were used as input
features to all of our baseline and enhancer models.

4.2. Network Architecture

For the acoustic model, we used the sequence-to-sequence
framework with soft attention based on [6]. The architecture
of the encoder is described in Table 1. The decoder consisted
of a single 256 dimensional GRU layer with a hybrid attention
mechanism similar to the models described in [16].

The discriminator network of the WGAN enhancer is de-
scribed in Table 2. All convolutional layers use leaky ReLU

Bidirectional GRU (dimension = 256, batch norm)
Bidirectional GRU (dimension = 256, batch norm)
Bidirectional GRU (dimension = 256, batch norm)

Pooling (2x1 striding)
Bidirectional GRU (dimension = 256, batch norm)

Pooling (2x1 striding)
Bidirectional GRU (dimension = 256, batch norm)

Pooling (2x1 striding)
Bidirectional GRU (dimension = 256, batch norm)

Mel spectrogram

Table 1. Encoder architecture (feature)×(time).

Mean pool of likelihood scores
Sigmoid

Linear projection to per-time step scalar
Bidirectional LSTM (dimension = 32)

3x3 Convolution, 96 filters, 1x1 striding
3x3 Convolution, 64 filters, 2x1 striding
Bidirectional LSTM (dimension = 32)

3x3 Convolution, 64 filters, 2x1 striding
7x2 Convolution, 32 filters, 5x1 striding

Encoder states

Table 2. Critic architecture (feature)×(time).

activation [17] with 0.2 slope for the leak, and batch normal-
ization [18].
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Model Near-Field Far-Field
CER WER CER WER

seq-to-seq 7.43% 21.18% 23.76% 50.84%
seq-to-seq + far-field Augmentation 7.69% 21.32% 12.47% 30.59%
seq-to-seq + L1-Distance Penalty 7.54% 20.45% 12.00% 29.19%
seq-to-seq + GAN Enhancer 7.78% 21.07% 11.26% 28.12%

Table 3. Speech recognition performance on the Wall Street Journal Corpus

4.3. Training

To establish a baseline, in the first experiment, we trained
a simple attention based seq-to-seq model [6]. All the seq-
to-seq networks in our experiments with the exception of
WGAN critic were trained using the Adam optimizer. We
evaluate all models on both clean and far-field test sets.

To study the effects of data augmentation, we train a new
seq-to-seq model with the same architecture and training pro-
cedure as the baseline. However this time, in each epoch, we
randomly select 40% of the training utterances and apply the
train RIRs to them (in our previous experiments we had ob-
served that 40% augmentation results in the best validation
performance).

For the enhancer models, λ in Equation 1 was tuned over
the dev set by doing a logarithmic sweep in [0.01, 10]. λ = 1
gave the best performance.

We use Algorithm 1 to train the WGAN enhancer. The
clipping parameter was 0.05 and ε was random normal with
0.001 standard deviation. We found that having a schedule for
ncritic was crucial. Namely, we do not update the encoder pa-
rameters with WGAN gradients for the first 3000 steps. Then,
we use the normal ncritic = 5. We hypothesize that the initial
encoder embedding is of poor quality and encouraging invari-
ance at this stage through the critic gradients significantly hin-
ders seq-to-seq training.

5. RESULTS

All of the evaluations in Table 3 were performed using greedy
decoding. To provide context, our near-field result is com-
parable to the 18.6% word error rates (WER) of [6] obtained
from 200 beam decoding. Our results show that seq-to-seq
models trained only on near-field data perform extremely
poorly on far-field speech. This suggests that it is non-trivial
for a seq-to-seq ASR model to generalize from homogeneous
near-field audio.

To overcome this, we train a stronger baseline with sim-
ulated far-field audio examples. This model had the same ar-
chitecture but 40% of the examples that the model was trained
on were convolved with a randomly chosen room impulse re-
sponse during training. We can see from Table 3 that sim-
ple data augmentation can significantly improve performance
on far-field audio without compromising the performance on

near-field audio too much, implying that our seq-to-seq model
is capable of modeling far-field speech to a certain extent.

Even with data augmentation, however, there is still a
fairly large gap between near- and far-field test performance.
The L1-distance penalty lowers the test set WER by 1.32%
absolute. GAN enhancer reduces the error rate by an addi-
tional 1.07%. Overall, the gap decreases by almost 27% rela-
tive compared to the model that only uses data augmentation.

A benefit of multi-task learning that constrains the en-
coder space is that the new objectives act as regularizers and
improve near-field performance as well. Models trained only
with far-field augmentation suffer a slight deterioration on
near-field speech, as the support of input distribution to be
modeled has increased but there is no mechanism to learn an
efficient representation that exploits commonalities in the in-
put. We also report that adding Gaussian noise didn’t consid-
erably help the encoder distance model, although there was
some initial improvement during training. The WGAN en-
hancer model most likely benefited from input perturbations
because it alleviates critic overfitting.

In our experiments, the encoder was never quite able to
produce fully indistinguishable embeddings that can fool the
discriminator. We suspect that the encoder’s ability to gener-
ate invariant representations is limited by the lack of a special-
ized front-end or more flexible layer that can fully remove far-
field effects. Grid LSTMs have been shown to better model
frequency variations [19] than GRU or LSTM, and may fur-
ther close the gap.

6. CONCLUSION

We showed that inducing invariance to noise at the encoder
is a promising way to improve speech recognition robustness,
and used the Wasserstein distance to train a robust seq-to-seq
ASR model. Because this loss does not require alignments,
the proposed method can be applied to problems where there
are unpaired and unsupervised audio data. Although we were
not able to completely close the performance gap between
near- and far-field speech, we anticipate that augmenting our
framework with hand-engineered or more expressive layers
will significantly enhance robustness.
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“Wasserstein generative adversarial networks,” in Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, Doina Precup and Yee Whye Teh, Eds.
06–11 Aug 2017, vol. 70 of Proceedings of Machine
Learning Research, pp. 214–223, PMLR.

[15] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael
Seltzer, and Sanjeev Khudanpur, “A study on data
augmentation of reverberant speech for robust speech
recognition,” ICASSP 2017 (submitted), 2017.

[16] Eric Battenberg et al., “Exploring neural transducers for
end-to-end speech recognition,” .

[17] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng,
“Rectifier nonlinearities improve neural network acous-
tic models,” 2013.

[18] Sergey Ioffe and Christian Szegedy, “Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift,” CoRR, vol. abs/1502.03167,
2015.

[19] Bo Li et al., “Acoustic modeling for google home,”
in Interspeech 2017, 18th Annual Conference of the In-
ternational Speech Communication Association, Stock-
holm, Sweden, August 20-24, 2017, 2017, pp. 399–403.

5643


