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ABSTRACT

A novel front-end speech parameterization technique that is robust

towards ambient noise and pitch variations is proposed in this paper.
In the proposed technique, the short-time magnitude spectrum ob-

tained by discrete Fourier transform is first decomposed in several

components using variational mode decomposition (VMD). For suf-

ficiently smoothing the spectrum, the higher-order components are
discarded. The smoothed spectrum is then obtained by reconstruct-

ing the spectrum using the first-two modes only. The Mel-frequency

cepstral coefficients computed using the VMD-based smoothed

spectra are observed to be affected less by ambient noise and pitch
variations. To validate the same, an automatic speech recogni-

tion system is developed on clean speech from adult speakers and

evaluated under noisy test conditions. Furthermore, experimental

evaluations are also performed on another test set which consists

of speech data from children to simulate large pitch differences.
The experimental evaluations as well as signal domain analyses

presented in this paper support these claims.

Index Terms— Speech recognition, ambient noise, pitch mis-
match, spectral smoothing, VMD.

1. INTRODUCTION

Automatic speech recognition (ASR) is the process for converting

speech signal captured as acoustic pressure waves into its corre-
sponding sequence of words by means of computers. Earlier ASR

applications included simple tasks such as voice dialing, interactive

voice response, etc. Recent years have witnessed an exponential

growth in computing power as well as amount of speech data avail-
able for system development. Consequently, ASR systems are being

deployed in more challenging and complex user applications such

as voice-based web search [1], interactions with hand-held mobile

devices, etc. In such real-world applications, the ASR systems are
exposed to varied operating conditions. People using smart phones

inside cars, buses and trains is a very common sight. For effective

operation, improving noise robustness of the employed ASR sys-

tem is an important and challenging aspect. In addition to ambient
noise, ASR systems employed in real-life applications are accessed

by users of varying age and gender. Pitch (fundamental frequency)

and formant frequencies are two such speaker-dependent acoustic

attributes that vary with age and gender [2, 3]. Hence, such systems
should also be robust towards the speaker-dependent variations (say

pitch variations). To impart robustness towards speaker-dependent

variations, acoustic models are generally trained on a large amount

of speech data collected from different classes of speakers. Fur-
thermore, techniques like feature-space maximum likelihood linear

regression (fMLLR) [4] and/or vocal tract length normalization

(VTLN) [5] are generally included to reduce the ill-effects of age

and gender variations. Similarly, additional front-end speech pro-
cessing modules are also included to mitigate the ill-effects of

ambient noise [6].

In this paper, we present a novel front-end speech parameteriza-

tion technique that simultaneously enhances the robustness towards

ambient noise as well as pitch variations. The proposed approach

is an extension of the dominant speech parameterization technique
called Mel-frequency cepstral coefficients (MFCC) [7]. In our ap-

proach, a spectral smoothing module is added to the standard MFCC

feature extraction process. In this regard, the short-time magnitude

spectrum obtained by discrete Fourier transform (DFT) is decom-
posed into several components using variational mode decomposi-

tion (VMD) [8, 9]. Spectral smoothing is achieved by discarding

the higher-order components and reconstructing the spectrum using

the first-two modes. Acoustic features extracted using the smoothed
spectra are observed to less sensitive to ambient noise and pitch vari-

ations. The experimental evaluations as well as signal domain anal-

yses presented in this paper demonstrate same.

VMD has been employed in several tasks related to time-series

analysis [10–13]. Some recent works have also explored VMD-

based signal decomposition for speech analysis [14]. To the best of
our knowledge, use of VMD-based spectral smoothing with applica-

tion to ASR has not been reported yet. Further, unlike other reported

techniques exploiting VMD algorithm, decomposition of spectrum

is performed in this study. The rest of this paper is organized as fol-
lows: In Section 2, the proposed front-end speech parameterization

technique employing spectral smoothing through VMD is described.

In Section 3, the experimental evaluations demonstrating the effec-

tiveness of the proposed features are presented. Finally, the paper is
concluded in Section 4.

2. PROPOSED FRONT-END ACOUSTIC FEATURES

The steps involved in the proposed front-end feature extraction tech-

nique are summarized in Fig. 1. In addition to the usual steps in

MFCC feature extraction process, a spectral smoothing module is
included in the proposed approach. The intended spectral smooth-

ing is achieved by decomposing the short-time magnitude spectra

into several modes using VMD as mentioned earlier. The spectrum

is then reconstructed using the first two modes only. MFCC fea-
tures are then computed using the smoothed spectra. The proposed

acoustic features are, therefore, referred to as VMD-MFCC in the

remaining of this paper. The VMD-MFCC features are observed to

be more robust towards noise as well as pitch variations. In the fol-
lowing subsection, a very brief introduction of VMD algorithm is
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Fig. 1: Block diagram representing the steps involved in the extrac-

tion of the proposed front-end acoustic features employing VMD-

based spectral smoothing.

presented. This is followed by a discussion on the effect of spec-

tral smoothing in reducing the ill-effects of ambient noise and pitch

periodicity.

2.1. Variational mode decomposition algorithm

Variational mode decomposition (VMD) is the technique to non-
recursively decompose a sequence into a discrete number of ban-

dlimited sub-sequences referred to as modes [8]. Each of the modes,

in turn, has a compact frequency support around a center frequency.

In order to identify these modes, a constrained optimization routine
exploiting alternating direction method of multipliers is employed.

During optimization step, the sum of the bandwidth of modes is

minimized subject to the condition that the sum of the modes ex-

actly reconstructs the original signal [8, 9]. In general, the number
of modes is fixed before optimization.

2.2. Effect of spectral smoothing on noise and pitch

Since speech is a slowly varying non-stationary signal, spectral anal-

ysis of speech is done on short-time frames. Hence, magnitude

spectra corresponding to each of the short-time frames is subjected
to VMD-based spectral smoothing. To do so, the given magnitude

spectrum is decomposed into several modes using the VMD algo-

rithm. Next, the magnitude spectrum is reconstructed back using

first few modes only. The spectral smoothing affected by this ap-
proach is demonstrated using the set of spectral plots shown in Fig. 2.

In Fig. 2(a), the original log-compressed short-time magnitude spec-

trum for a voiced frame of speech signal is shown. This spectrum

is decomposed into 8 modes and then reconstructed back after drop-

ping the higher-order modes. The reconstructed magnitude spectrum
by combining 4 lower-order modes is shown in Fig. 2(b). Similarly,

the magnitude spectra derived by combining 3 and 2 lower-order

modes are shown in Fig. 2(c) and Fig. 2(d), respectively. Finally,

the magnitude spectrum obtained by retaining only the first mode is
shown in Fig. 2(e).

It is evident from the shown spectral plots that, dropping higher-
order modes leads to smoothing of the spectrum. Since further spec-

tral smoothing will happen due to the use of Mel-filterbank and low-

time lifter, dropping all higher-order modes and retaining only the

first one may subsequently lead to over-smoothing. Therefore, this
case was not considered for deriving the smoothed spectra. In this

study, we have used the smoothed spectra obtained by combining

the two lower-order modes only. The resulting spectrum, as clearly

visible from Fig. 2(d), closely resembles the spectral envelope. The
ripples in the magnitude spectrum, in the case of speech signal, are
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Fig. 2: (a) short-time magnitude spectrum for a frame of voiced

speech. The reconstructed smoothed spectrum obtained by combin-

ing (b) first 4 modes, (c) first 3 modes, (d) first 2 modes and (e) first

mode only. In each figure, x-axis represents the frequency in Hz and

y-axis represents the magnitude in dB.

predominantly due to the excitation source information. In the con-

text of ASR, excitation source information is undesirable and hence
should be removed. Spectral smoothing via VMD helps in removing

the source information to a large extent. Therefore, spectral smooth-

ing is eventually expected to improve the recognition performance

of the ASR system.

To demonstrate the effect of spectral smoothing on ambient
noise and pitch variations, we performed the following study. We

took two speech signals having the same word level transcription

spoken by a high-pitched (female) and a low-pitched (male) speaker.

The speech signals from the female and male speakers are shown in
Fig. 3(a) and Fig. 3(b), respectively. The corresponding pitch con-

tours are depicted in Fig. 3(c) and Fig. 3(d), respectively. The pitch

contours were derived using the Wavesurfer toolkit [15]. Despite

the context being same, pitch for speech data from female speaker
is significantly higher than that for the male speaker. Next, both

the speech samples were contaminated by adding 10dB noise. The

speech waveforms corrupted by ambient noise are shown in Fig. 3(e)

and Fig. 3(f) while their corresponding pitch contours are shown in
Fig. 3(g) and Fig. 3(h), respectively. For each of the noise added

speech files, the set short-time spectra was derived next. The magni-

tude spectra was then subjected to spectral smoothing using VMD as

explained earlier. Finally, the speech signal was reconstructed from
the smoothed spectra using overlap-add method after appending the
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Fig. 3: (a) and (b) show a segment of clean speech data from fe-

male and male speakers, respectively. (c) and (d) the corresponding

pitch contours for clean speech examples. (e) and (f) display the

speech segments from female and male speakers corrupted by 10

dB noise, respectively, while the corresponding pitch contours are

shown in (g) and (h), respectively. The reconstructed speech signals

after applying VMD-based spectral smoothing are shown in (i) and

(j), respectively, and their pitch contours are depicted in (k) and (l),

respectively. In each figure, the x-axis represents time in seconds.

For the speech signal, the y-axis denotes the amplitude. At the same

time, y-axis represents the pitch in Hz for the pitch contours shown

in this figure.

phase information. The reconstructed speech signals are shown in

Fig. 3(i) and Fig. 3(j), respectively. Their pitch contours are shown
in Fig. 3(k) and Fig. 3(l), respectively.

On comparing Fig. 3(e) and Fig. 3(f) with Fig. 3(i) and Fig. 3(j),
the reduction in the noise can be easily noticed. At the same time,

there is no significant change in the shape of the reconstructed signal

when compared to the original clean waveforms. It may, therefore,

be concluded that the proposed spectral smoothing reduces the ill-
effects ambient noise. Similarly, on comparing the pitch contours for

the original and reconstructed signals, significant reduction in pitch

values for the female speaker is noted. On the other hand, the pitch

contour for the male speaker remains almost the same. Thus, given
that the linguistic context remains fixed, spectral smoothing results

in similar pitch values for both male and female speakers. Reduc-

ing the pitch for female speakers and making it comparable to that

for the male speakers is bound to reduce the pitch sensitivity of the
ASR system. In the following section, we present the experimental

evaluations that statistically validate the same.

3. EXPERIMENTAL EVALUATIONS

In this section, we present the results of the simulation studies done

for evaluating the effectiveness of proposed front-end acoustic fea-

tures over the MFCC features. First, the details of speech corpora
and ASR system employed for evaluation are detailed. We then

present the experimental evaluations under noisy test conditions. Fi-

nally, the simulation studies illustrating the effectiveness of proposed

features under pitch-mismatched setup are presented.

3.1. Experimental setup

For computing MFCC features, overlapping Hamming windows

of length 20 ms with frame-shift of 10 ms were employed to an-

alyze speech data into short-time frames. In order to extract 13-

dimensional base MFCC features, a 40-channel Mel-filterbank was
used. The base MFCC features were then spliced in time considering

a context size of 9 frames making the feature vector dimension equal

to 117. Next, dimensionality reduction and de-correlation were per-

formed using linear discriminant analysis (LDA) and maximum

likelihood linear transformation (MLLT) to obtain 40 dimensional
feature vectors. The standard MATLAB code was used to perform

VMD. The bandwidth constraint was chosen to be 2000 while the

number of modes was fixed at 8. The values were selected through

empirical studies. The window length, frame-rate and the number
of channels in the Mel-filterbank were kept the same in the case

of VMD-MFCC features as well. Furthermore, as in the case of

MFCC, time-splicing followed by LDA and MLLT were performed

on the base VMD-MFCC to obtain 40 dimensional feature vectors.
Cepstral mean and variance normalization (CMVN) was applied

to both the acoustic feature kinds. In addition to CMVN, feature

normalization was also done using feature-space maximum like-

lihood linear regression (fMLLR) to boost the robustness towards
speaker-dependent variations. The required fMLLR transformations

were generated using speaker adaptive training [16].

The ASR system used for evaluation was trained on speech data
obtained from the British English speech corpus WSJCAM0 [17].

The Kaldi toolkit [18] (accessed on June 2017) was used for all the

experimental evaluations presented in this paper. For statistical mod-

eling, a training set consisting of 15.5 hours of speech data from
92 adult male/female speakers was created from WSJCAM0. The

number of utterances in the training set was equal to 7, 852 with a

total 132, 778 words. For statistically learning the temporal varia-

tions, context-dependent hidden Markov models (HMM) were em-
ployed. Initially, the observation probabilities for the HMM states

were generated using Gaussian mixture models (GMM). Cross-word

triphone models consisting of 3-states HMM with 8 diagonal covari-

ance Gaussian components per state were used for the GMM-HMM-
based ASR system. Decision tree-based state tying was performed

with the maximum number of senones being fixed at 2000.

After successfully implementing GMM-HMM system, acous-
tic modeling based on deep neural network (DNN) [19] was ex-

plored next. Before training DNN-HMM parameters, the fMLLR-

normalized feature vectors were time-spliced once again considering

a context size of 9 frames. The number of hidden layers in the DNN-
HMM setup was fixed at 8 with each layer consisting of 1024 hidden

nodes having tanh nonlinearity. An initial learning rate of 0.005 was

chosen for training the DNN-HMM parameters. The learning rate

was reduced to 0.0005 in 15 epochs. After reducing the learning
rate, additional 5 epochs of training were employed. A minibatch
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Table 1: WERs for the adults’ speech test set with respect to GMM-

HMM and DNN-HMM systems under clean and noisy test condi-

tions demonstrating the effectiveness of proposed VMD-MFCC fea-

tures over conventional MFCC.

Acoustic SNR WER (in %) Relative

model dB MFCC VMD-MFCC imp. (%)

GMM

Clean 7.24 7.31 -0.9

15 14.77 11.38 22.9

10 31.09 23.01 25.9

DNN

Clean 5.89 6.01 -2.0

15 10.47 9.25 11.6

10 23.09 19.62 15.0

size of 512 was selected for neural net training. Furthermore, the

initial state-level alignments employed in DNN training were gener-
ated using the earlier trained GMM-HMM system.

3.2. Evaluating noise robustness of the proposed features

To evaluate the noise robustness of the proposed acoustic features,

a test set consisting 0.6 hours of speech data was derived from the
WSJCAM0 database. This test set comprised of data from 20 adult

male/female speakers with a total of 5, 608 words. While decoding

the adults’ speech test set, MIT-Lincoln 5k Wall Street Journal bi-

gram language model (LM) was used. This LM has a perplexity of

95.3 with respect to the adults’ test set while there are no out-of-
vocabulary (OOV) words. A lexicon consisting of 5, 850 words in-

cluding the pronunciation variations was used during decoding. The

word error rate (WER) metric was used for evaluating the recogni-

tion performance.

The WERs for the adults’ speech test set with respect to GMM-

and DNN-based systems are enlisted in Table 1. The WERs are

given for clean as well as noisy test conditions. For noisy testing,
several different noises collected from NOISEX-92 database [20]

such as factory noise, HF radio channel noise, pink noise, vehicle

noise, engine room and operation room noises, etc., were added to

the test data. The tabulated WERs are averaged over all the noise
types. Furthermore, evaluations were performed for two different

values of signal-to-noise ratio (SNR). Under clean testing scenario,

both MFCC and proposed features result in almost similar WERs.

On the other hand, VMD-MFCC features yield significantly lower
WERs than MFCC when noise is added. The percentage relative

improvements in WER are also tabulated to highlight the same.

3.3. Evaluating robustness towards pitch variations

Next, we evaluated the effectiveness of the proposed features un-

der pitch-mismatched setup. To do so, another test set was derived
from the PF-STAR speech corpus (British English) [21] consist-

ing of speech data from child speakers. The employed children’s

speech test set consisted of 1.1 hours of speech data from 60 child

speakers with a total of 5, 067 words. The age of the child speak-
ers in this test set lies in between 4 − 14 years. While decoding

the children’s speech test sets, a domain-specific 1.5k bigram LM

was employed. This bigram LM was trained on the transcripts of

speech data in PF-STAR excluding the test set. Further, a lexicon
consisting of 1, 969 words including the pronunciation variations

Table 2: WERs for the children’s speech test set with respect to

GMM-HMM and DNN-HMM systems demonstrating the robust-

ness of proposed VMD-MFCC features towards pitch variations.

Acoustic WER (in %) Relative

model MFCC VMD-MFCC imp. (%)

GMM 33.52 27.36 18.4

DNN 19.27 16.37 15.0

Table 3: WERs for the children’s speech test set under noisy test-

ing conditions demonstrating the effectiveness of proposed VMD-

MFCC features over conventional MFCC.

Acoustic SNR WER (in %) Relative

model dB MFCC VMD-MFCC imp. (%)

GMM
15 57.55 49.28 14.2

10 79.15 70.05 11.4

DNN
15 36.16 32.00 11.5

10 65.07 56.65 12.1

was employed. As stated earlier, children’s speech is reported to
have higher pitch (and also formant frequencies) when compared to

adult male/female speakers due to anatomical differences. Further-

more, children’s speech exhibits higher pitch variability than adults’

speech. Consequently, transcribing children’s speech on the devel-
oped acoustic models, leads to severe pitch mismatch.

The WERs for children’s speech test set under clean conditions

are given in Table 2. Compared to the matched case testing (adults’
test set), severely degraded recognition performances are obtained

in the mismatched setup. Similar observations have been noted in

earlier reported works as well [22–24]. The anatomical differences

among the two groups of speakers lead to acoustic mismatch which,
in turn, results in higher WERs [25–27]. Several works have also

been reported to improve the recognition of children’s speech. The

difference in pitch is one among the several factors contributing to

the acoustic mismatch as highlighted in [28–32]. The use of pro-
posed features leads to significant reduction in WERs due to reduced

pitch mismatch. The relative improvements given in Table 2 ob-

tained by using the proposed features highlight the same. Next, we

evaluated the performance of the proposed features for children’s
speech recognition under noisy conditions. The WERs for that study

are enlisted in Table 3. Like matched case testing, significant im-

provements are noted for noisy testing as well.

4. CONCLUSION

In the work presented in this paper, a novel front-end speech pa-
rameterization technique is presented. During the feature extraction

process, the magnitude spectra is decomposed into several modes

using variational mode decomposition. The smoothed spectra is ob-

tained by dropping the higher-order modes prior to reconstruction.
MFCC features are then computed using the smoothed spectra. The

proposed acoustic features are observed to be more robust towards

ambient noise as well pitch variations when compared to the con-

ventional MFCC features. The signal domain analyses as well as the
experimental evaluations presented in this study validate the same.
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