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ABSTRACT

This paper addresses the task of Automatic Speech Recognition
(ASR) with music in the background. We consider two different
situations: 1) scenarios with very small amount of labeled training
utterances (duration 1 hour) and 2) scenarios with large amount of
labeled training utterances (duration 132 hours). In these situations,
we aim to achieve robust recognition. To this end we investigate
the following techniques: a) multi-condition training of the acoustic
model, b) denoising autoencoders for feature enhancement and c)
joint training of both above mentioned techniques.

We demonstrate that the considered methods can be successfully
trained with the small amount of labeled acoustic data. We present
substantially improved performance compared to acoustic models
trained on clean speech. Further, we show a significant increase of
accuracy in the under-resourced scenario, when utilizing additional
amount of non-labeled data. Here, the non-labeled dataset is used to
improve the accuracy of the feature enhancement via autoencoders.
Subsequently, the autoencoders are jointly fine-tuned along with the
acoustic model using the small amount of labeled utterances.

Index Terms: robust speech recognition, feature enhancement, de-
noising autoencoder, multi-condition training, joint training.

1. INTRODUCTION

Nowadays, the research in automatic speech recognition (ASR) is
focused on robustness of the performance with respect to difficult en-
vironmental conditions. An example of such conditions arising natu-
rally in real-world is background noise. The robustness-introducing
techniques most often focus on environmental noise, such as street
or restaurant sounds [1]. Principally different type of interference is
music, which is however less considered in the ASR literature. Yet,
it is one of the often encountered background sounds in applications
such as online 24/7 monitoring of broadcast media.

In our recent paper [2], we analyzed two popular approaches
to robust ASR in the context of background music. The first ap-
proach was the multi-condition training (MCT) of acoustic models;
we considered Fully-connected deep neural network Acoustic Mod-
els (FAM). Here, the model incorporates the knowledge on possi-
ble interferences through the inclusion of the distorted signals in the
training set. For non-musical environmental noise, this approach was
reported to obtain high performance in [3]. Besides, this technique
was demonstrated to be beneficial for reverberated speech in [4, 5].

Another analyzed approach is the feature preprocessing using
denoising autoencoders (AE, [2, 6]). In our context, the denois-
ing autoencoder is a feed-forward deep neural network, either fully-
connected (FAE) or a convolutional one (CAE). It aims at separa-
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tion of the speech features from the interfering music, i.e., the ASR
is subsequently performed on the enhanced features. Considering
the environmental noise, the benefits of autoencoders for ASR were
shown in [7], where the car and factory noises were considered.
Another network topology for autoencoders, based on Bidirectional
Long Short-Term Memory (BLSTM) recurrent neural networks, was
presented in [8]. The front-end preprocessing usually introduces dis-
tortions into enhanced data, which are not observed by the acoustic
model trained on the clean data. To mitigate, the enhancement is
usually applied on both training and test data and the new acoustic
model is trained on the enhanced dataset [9].

Relation to prior work: We presented in [2] that both of the
above mentioned techniques are able to significantly improve the
recognition of speech with background music. When comparing the
two, we found the multi-condition training achieving slightly supe-
rior results, especially for mismatched training-test conditions and
more complex background music.

Unlike the previous work, this paper investigates the suitability
of the above-mentioned techniques in a scenario where a very small
amount of labeled training speech is available (duration of about 1
hour). This problem can be encountered, e.g., when building a rec-
ognizer for a new language or when dealing with an under-resourced
language [10]. Since speech labeling is costly and time-consuming,
we also investigate the possibility of improving the performance us-
ing a larger amount of non-labeled speech. We compare the perfor-
mance of these under-resourced models to models trained using a
large amount of labeled speech.

Next, we extend the portfolio of the considered robust tech-
niques. Taking into account the advantages of convolutional topol-
ogy reported in [11], we consider the Convolutional Acoustic Models
for the Multi-Condition Training (MCT-CAM). The convolutional
models reflect strong correlations of speech in time and are invari-
ant to translational variance within speech caused, e.g., by different
speaking styles. Further, we attempt to combine the benefits of both
above-mentioned approaches using the Joint Training of the acous-
tic model and convolutional autoencoder (JMCT) proposed in [12].
This approach fine-tunes both the feature enhancement by CAE and
the acoustic model, exploiting the information about senone classi-
fication instead of optimizing just the squared error as in CAE.

Finally, we perform a more detailed analysis of the autoencoder
performance with respect to its topology than was performed in [2].
There we found that the performance of FAE is comparable to the
performance of CAE, assuming both networks have a comparable
number of hidden units. This, however, bestows the CAE with a
lower number of free parameters. This paper shows that CAE out-
performs the FAE, when deeper network and broader convolutional
layers are used.

We evaluate the functionality of the methods on artificial mix-
tures of speech and music, as well as real-world radio shows.
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2. PROBLEM FORMULATION AND DATA DESCRIPTION

We focus on the robustness of ASR to music in the background of
speech. All of the considered training data are generated artificially,
by summation of the speech and music signal. We analyze different
scenarios with respect to average Signal-to-Noise Ratio (SNR).

We focus on the Electronic music (dataset duration 667 min-
utes), because it resembles the background music of TV shows. The
music originates at the database of free music tracks at the Free
Music Archive [13] and consists of genres such as ambient, dance,
down-tempo, chillout or IDM.

We consider a Large Vocabulary Continuous Speech Recogni-
tion (LVCSR) task. Due to the data most readily available to us, we
focus on the Czech language, without any loss of generality to the
investigated problems. Our available dataset of clean speech consists
of 132 hours of Czech utterances.

We use two different sizes of training datasets throughout the
experiments. The large training dataset contains all available utter-
ances, i.e., 132 hours of labeled speech. The small training dataset
is a subset of the former, which contains 1 hour of labeled speech.
We use this dataset to study the considered techniques in scenarios
similar to under-resourced languages. We select the sentences for
the subset, such that all Czech phonemes are sufficiently present to
successfully train the acoustic models.

In the context of the small dataset, we investigate one more sce-
nario, where next to the 1 hour of labeled data we also have 20 hours
of non-labeled data. Compared to labeling the data, the non-labeled
speech is easier to obtain. It cannot be used directly to train the
acoustic models, but it can be used to improve the performance of
the autoencoders. However, the acoustic models can also benefit
from the enlarged amount of data due to joint training/fine-tuning
with the autoencoders.

3. PROPOSED ROBUSTNESS-INTRODUCING
TECHNIQUES

We consider three techniques: 1) The multi-condition training
(MCT) of the acoustic model, either a fully-connected (FAM) or
convolutional (CAM) one. 2) The denoising autoencoder trained
to remove the background music from the features and subsequent
FAM training on the processed data. For this we utilize two types of
autoencoder: the fully-connected (FAE) and the convolutional net-
work (CAE). 3) The joint multi-condition training of CAE and FAM
using noisy training data (JMCT).

The configuration of hyper-parameters for all acoustic models
corresponds to the best performance in preliminary experiments with
undistorted data. The configuration for autoencoders was selected
based on experiments in Section 4.3.

All neural networks are trained using the Torch library [14]. The
training procedure ends when the respective optimization criterion
does not improve anymore on a small validation dataset, which is
not part of the training set. We use the ReLU activation function
within the networks.

For feature extraction, 39 filter bank coefficients [15] are com-
puted using 25-ms frames of signal and frame shift of 10 ms. The
input for DNNs consists of 11 consecutive feature vectors, 5 preced-
ing and 5 following the current frame.

3.1. General acoustic model structure

The FAM/CAM networks trained by MCT and on data produced by
autoencoders share many common topological features and hyper-

parameters. All models are based on Hidden Markov Model-Deep
Neural Network (HMM-DNN) hybrid architecture [16]. The under-
lying Gaussian Mixture Model (GMM) is trained as context depen-
dent, speaker independent.

We use the two above-mentioned sizes of training set, i.e., 1 hour
and 132 hours. The GMM model corresponding to the small dataset
contains 619 physical states. The underlying GMM model for the
large dataset contains 2219 physical states.

The acoustic models are trained using minimization of the neg-
ative log-likelihood criterion. As feature normalization, we employ
the Mean Subtraction ([17]) with a floating window of 1 s.

As our baseline acoustic model, we consider a single-style
model (SCT). It shares the topology described above and is trained
on an undistorted instance of each training dataset.

3.2. Multi-condition training of acoustic model

To train the multi-condition model, we prepare each dataset in the
following way. We select three desired SNR levels (10, 5 and 0 dB).
Subsequently, we split the speech corpus into four parts. The first
part is left undistorted. To all other parts we add corresponding mu-
sic, scaled to the predefined average SNR level. The average SNR
is computed per one file of speech recordings, which usually corre-
sponds to about two sentences (about 20 words).

The FAMs have a feed-forward structure with five fully-
connected hidden layers. Each hidden layer consists of 768 units.

The CAMs are comprised of two convolutional layers and three
fully connected layers (consisting of 768 units). The input consists
of 11 feature maps, each 39 x 1 in size, which correspond to the
11 consecutive feature vectors. Based on experiments with autoen-
coder topology from Section 4.3, the first layer consists of 105 fea-
ture maps 39 x 1 in size, and the second layer of 157 feature maps
13 x 1 1in size. There is a 3 : 1 max-pooling layer situated between
the convolutional layers.

3.3. Fully-connected feed-forward denoising autoencoder

Our FAE is a feed-forward deep neural network, where all neurons
in the lower hidden layer are connected to all neurons in the higher
layer. It accepts distorted features at its input layer. The output is an
estimate of clean speech features. During the training, the autoen-
coder requires pairs of corrupted and undistorted speech. Our undis-
torted data consists of Czech speech with datasets similar to the ones
used for MCT. The distorted counterpart is generated artificially as
described in Section 3.2.

The network is trained to minimize the mean square distance be-
tween the distorted input and the clean target. This criterion function
is sensitive to scaling, thus we normalize both training and test data
(each feature separately) to zero mean and unitary variance.

Our autoencoder is constituted of three or four hidden layers (see
Section 4.3), with 1024 neurons in each layer. We use the ReLU
activation function.

3.4. Convolutional denoising autoencoder

The CAE represents another network topology, in which the neurons
in the higher hidden layer have connections to only several neurons
in the lower layer. This model has been proposed for acoustic mod-
eling and feature extraction in ASR context in [18, 19].

The input feature vectors, targets, the training dataset, the acti-
vation functions, and the optimizing criterion remain the same as for
the FAE. The topology of the two autoencoders differ in two aspects:
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1) the input layer; and 2) the replacement of the first two hidden lay-
ers of the FAE with two convolutional layers in CAE (see Section 4.3
for details).

The input of CAE consists of 11 feature maps, which correspond
to 11 following frames in the input feature vector. Each feature map
is 39 elements long (the number of filter bank features for a single
frame). The convolutional kernel in both layers is of size 5 x 1
(i.e., the weights are shared in frequency only, as suggested in [19]).
Between the convolutional layers, there is a max-pooling layer; we
use max-pooling by a factor of 3.

3.5. Joint training of CAE and FAM

We perform the joint training (JMCT) in the following manner, simi-
lar to paper [12]. 1) The CAE is trained as is described in Section 3.4,
with the following two exceptions: a) We use as targets eleven con-
secutive frames of clean speech, not only the current single frame as
in Section 3.4; and b) the CAE contains only a single fully-connected
hidden layer consisting of 768 units. 2) We train a FAM network us-
ing the data processed by this CAE, i.e., the input vector consists of
39 x 11 features for each speech frame. The FAM model contains
two hidden layers with 768 units. 3) We directly stack the acoustic
modeling layers on top of the autoencoder layers, which means that
the output layer of the autoencoder is similar to the input layer of
the acoustic model. 4) All weights in the resulting network are fine-
tuned using the negative log-likelihood criterion. The convolutional
acoustic model resulting from the joint training is thus similar in size
and topology to the MCT-CAM model described in Section 3.2.

During the joint training, we encountered very slow conver-
gence speed after stacking the CAE and FAM. To mitigate this phe-
nomenon, we apply batch normalization [20] of hidden layers within
the FAM network in step 2).

4. EXPERIMENTS

We report the results of our experiments via recognition accuracy
[%]; all improvements are stated as absolute.

4.1. Description of the test set

We consider two types of test data in our experiments: 1) The arti-
ficially generated data; and 2) the real-world speech recordings with
music in the background.

The generated dataset has a duration of 2 hours and 44 minutes
(13622 words) and consists of texts dictated in a silent environment
via a close-talk microphone. To the clean speech we add the elec-
tronic music (40 minutes) with four distinct SNR levels; 10 dB, 5 dB,
0 dB and —5 dB. We concatenate the available music as is necessary,
to create background for the whole test-speech set. We replicate the
whole test dataset for each scenario with a specific SNR level.

The real-world dataset consists of 17 minutes and 22 seconds
of speech (2222 words), recorded from a digital broadcast of a lo-
cal radio station (Radiozurndl [21]). The speech comes from several
summaries, which are given at the beginning of the news program.
A track of electronic music is present in the background. We esti-
mate the average SNR of the dataset at about 10 dB using method
from [22].

4.2. Employed recognition engine

We use our own ASR system; its core is formed by a one-pass speech
decoder performing a time-synchronous Viterbi search.

The linguistic part of the system consists of a lexicon and a lan-
guage model. In this paper, we assume that there is a sufficient
amount of linguistic data to create a functional model, i.e., we do not
investigate the under-resourced scenario from the linguistic point of
view. We use two types of language models: 1) A model originating
from newspaper texts for the scenarios with the simulated data; and
2) A model originating from broadcast transcriptions for the scenario
with real-world data.

The lexicon contains 550k entries (word forms and multi-word
collocations) that were observed most frequently in the corpora cov-
ering newspaper texts. The employed Language Model (LM) is
based on N-grams. Due to the very large vocabulary size, the sys-
tem uses bigrams. Our supplementary experiments showed that the
bigram structure of the language model results in the best ASR per-
formance with reasonable computational demands.

4.3. Comparison of the autoencoder topologies

In this section, we supplement the comparison of the autoencoders
presented in our previous paper [2] and perform a hyper-parameter
selection for FAE and CAE. The best configurations (FAE-2 and
CAE-4) are used further in Sections 4.4 and 4.5.

The comparison in [2] was based on an equal number of hidden
units/layers of the respective networks (FAE-1 and CAE-1). This is
somewhat unfair for the CAE, it forces it to have a smaller number
of free parameters. In Tables 1 and 2, we present a more balanced
analysis, observing the number of free parameters within the models,
as was presented, e.g., in [11]. The autoencoders were trained using
the large training dataset.

Table 1. Accuracy[%] achieved by autoencoder enhancement on
the real-world dataset. Column Maps describes numbers of feature
maps in the first and second convolutional layers, respectively. Bold
numbers indicate the highest accuracy.

Method | Layers | Params Maps Accuracy[%]
FAE-1 3 2.6M 0/0 85.8
FAE-2 4 3.6M 0/0 85.2
CAE-1 3 1.6M 13/39 86.1
CAE-2 4 2.1M 26/78 85.3
CAE-3 4 2.2M 52/78 85.6
CAE-4 4 3.3M 105/157 85.0

Table 2. Accuracy[%] achieved by autoencoder enhancement on the
generated dataset with respect to average SNR level. Bold numbers
indicate the highest accuracy for given SNR level.

SNR-level
Method | Params |~ ——648 T 5dB | 0dB | —5dB
FAE-1 | 2.6M || 844 | 823 | 786 | 654 | 383
FAE2 | 3.6M || 845 | 82.1 | 78.7 | 666 | 39.9
CAE-1 | 1.6M || 840 | 81.8 | 77.7 | 622 | 36.0
CAE2 | 2.IM || 843 | 822 | 79.0 | 668 | 403
CAE3 | 22M || 845 | 825 | 79.6 | 69.0 | 435
CAE4 | 33M || 844 | 827 | 79.7 | 69.7 | 443

The results, presented in Tables 1 and 2, indicate that the FAEs
do not benefit much from increasing the number of free parameters
from 2.6M to 3.6M. Considering the comparable number of free pa-
rameters (FAE-2 and CAE-4), the CAE outperforms the FAE. This
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is in concert with the literature describing the convolutional autoen-
coders [6]. The CAE emphasizes more than the FAE the strong de-
pendence between features, which are close in time and frequency.
With respect to the comparison in [2], the increased performance of
CAE is caused: 1) as expected, by an increased number of free pa-
rameters (see CAE-1 and CAE-2) and 2) by utilization of a broader
first layer, especially in experiments considering lower SNR levels
(see CAE-2 and CAE-3).

Considering the real dataset (where we estimate the SNR level at
about 10 dB), the differences between the AEs diminish. This result
is consistent with the results achieved on the generated dataset and
high SNR levels.

4.4. Evaluation of models trained on the small dataset

In Table 3 we analyze the behavior of the models trained on the small
dataset (1 hour duration).

All considered techniques improve the performance over the
baseline SCT acoustic model. The least effective in this context ap-
pears to be the standalone utilization of the autoencoders. The CAE
is superior to FAE, but does not achieve the performance of the MCT.
Utilization of additional non-labeled data improves the performance
of autoencoders, e.g., CAE accuracy improves by more than 7 % for
SNR level 0 dB.

Investigating the multi-condition training, the MCT-CAM
model performs better compared to MCT-FAM, which in concert
with the literature [11]. This advantage vanishes for very low SNR.
We presume that training CAM using random initialization might be
problematic using very small datasets.

‘We achieved the best results using the joint training. The JMCT
models, which are comparable in topology and size to models MCT-
CAM, exhibit the higher accuracy of the two. This holds even for
very low SNR; here, the performance drop as compared to MCT-
FAM does not appear.

Additional hours of non-labeled data are able to improve the
recognition accuracy considerably. This corresponds to our scenario
when the CAE within JMCT model is trained on 20 hours of non-
labeled data and the whole concatenated model is fine-tuned on the
1 hour of labeled data. The JMCT(20h) model consistently outper-
forms the JMCT(1h) model by 1 — 4%. The pretrained JMCT(20h)
model outperforms even the SCT model on clean speech; for which
the SCT model is specifically trained.

Considering the real-world dataset, the accuracy the improve-
ments are less significant than on the corresponding augmented
dataset with SNR of 10dB. We conjecture that this is caused by the
smaller deterioration of the SCT performance on the real dataset.

4.5. Evaluation of models trained on the large dataset

The additional data in the large dataset bring higher accuracy and
more robustness to all trained models, as is indicated in Table 4.
For example, comparing the SCT model to the under-resourced SCT
model, the achieved accuracy is higher by about 8% when transcrib-
ing the clean data and by about 16% when recognizing the real-world
dataset. Moreover, with decreasing SNR, the accuracy of all models
trained on large dataset deteriorates much less rapidly.

The autoencoders achieve comparable results to MCT for a SNR
level of 10 dB and higher, unlike to the under-resourced scenario. On
lower SNR levels, the MCT outperforms the autoencoders consider-
ably (by more than 7% for SNR 0 dB) .

The MCT-CAM appears to be superior to MCT-FAM for all test
datasets. Its accuracy is not even deteriorated on clean data com-

pared to SCT. In contrast to results observed on models trained using
the small training set, the joint training improves the performance
over MCT-CAM only slightly (0 — 1.1%).

Investigating the real-world dataset, all the robust techniques are
able to improve the results obtained by SCT (by up to 2.7%). The
best results are achieved by MCT-CAM and JMCT, which is consis-
tent with results achieved on simulated data.

Table 3. Training set: 1 hour; Accuracy[%] on the generated/real-
world dataset. Bold numbers indicate the highest achieved accuracy.
The numbers in parentheses describe the amount of non-labeled data

to train the autoencoder. SNEIevel( )
-level (generate

Method | -~ T T0dB 5ng 0dB | —5a8 || Real
SCT 76.8 | 59.4 |39.8 |20.5| 10.8 67.5
MCT-FAM 749 | 713 | 61.6 | 435 | 21.5 69.1
MCT-CAM || 764 | 72.1 | 62.0 | 409 | 19.5 69.6
FAE(1h) 65.1 51.8 [ 379|210 | 11.3 58.0
FAE(20h) 72.8 | 655 | 54.1 | 358 | 18.6 66.3
CAE(1h) 71.8 | 645 | 535|345 | 17.1 63.9
CAE(20h) 743 | 68.6 | 594 | 428 | 232 70.8
JMCT(1h) 76.1 723 | 65.1 | 479 | 24.7 66.9
JMCT(20h) || 77.5 | 73.7 | 67.0 | 52.1 | 27.0 70.9

Table 4. Training set: 132 hours; Accuracy[%] on the
generated/real-world dataset with respect to average SNR level.
Bold numbers indicate the highest achieved accuracy.
SNR-level (generated)
Method  |e 008 | 508 | 008 | 505 || ke
SCT 849 | 78.8 | 64.8 | 38.7 | 182 || 83.7
MCT-FAM || 84.7 | 83.6 | 81.5| 745 | 53.0 || 86.1
MCT-CAM || 849 | 84.0 | 81.9 | 76.1 | 56.5 || 86.4
FAE 84.5 | 82.1 | 78.7 | 66.6 | 399 || 85.2
CAE 84.4 | 82.7 | 79.7 | 69.7 | 44.3 85.0
JMCT 85.1 | 84.2 | 823 |76.7 | 57.7 || 86.4

5. CONCLUSIONS

From the above-stated results we draw the following conclusions,
which hold regardless of the size of the training set. 1) All consid-
ered robust ASR techniques are able to improve the results of the
SCT baseline model when recognizing speech with background mu-
sic. 2) Comparing the two autoencoder topologies, the CAE is more
suitable for noisy feature enhancement. 3) Comparing the two types
of MCT acoustic models, the convolutional one is superior. 4) The
best results are achieved using the joint training of autoencoder and
acoustic model. This holds even when comparing MCT-CAM and
JMCT, which share similar topology and size. This means that a pre-
trained CAE is suitable as initial layers of the final acoustic model,
when it is fine-tuned along with the weights of the acoustic model.

The following conclusions stem from the experiments using
models trained on the small dataset. 5) As expected, models trained
using the smaller dataset exhibit lesser accuracy and are less robust
to background music. 6) An additional amount of non-labeled data
can considerably improve the performance of any autoencoder type,
and can also considerably boost the performance of IMCT systems.
This improvement thus brings the benefits of a larger training dataset
without the need for any additional labeling of data.
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