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ABSTRACT

For the task of speech enhancement, local learning ob-
jectives are agnostic to phonetic structures helpful for speech
recognition. We propose to add a global criterion to ensure
de-noised speech is useful for downstream tasks like ASR.
We first train a spectral classifier on clean speech to predict
senone labels. Then, the spectral classifier is joined with our
speech enhancer as a noisy speech recognizer. This model
is taught to imitate the output of the spectral classifier alone
on clean speech. This mimic loss is combined with the tradi-
tional local criterion to train the speech enhancer to produce
de-noised speech. Feeding the de-noised speech to an off-
the-shelf Kaldi training recipe for the CHiME-2 corpus shows
significant improvements in WER.

Index Terms— Speech enhancement, Spectral mapping,
Mimic loss, Noise-robust speech recognition, CHiME-2

1. INTRODUCTION

Automatic Speech Recognition (ASR) has shown tremendous
progress over the years in recognizing clean speech. How-
ever, traditional DNN-HMM ASR systems still suffer from
performance degradation in the presence of acoustic interfer-
ence, such as additive noise and room reverberation. Some
strategies for building a noise-robust speech recognizer in-
clude using noise-invariant features [1], augmented data [2],
bulkier acoustic models like LSTMs and CNNs [2, 3] and
sophisticated language models [2, 3]. Few groups, however,
have looked at systems that train only a speech enhancement
model, which can be used for different tasks.

A speech enhancement front-end refers to a performance-
boosting denoising technique that can be attached to any stan-
dard automatic speech recognition model. Some deep learn-
ing models for speech enhancement attempt to estimate an
ideal ratio mask (IRM) for removing noise from a speech sig-
nal [4]. Others utilize spectral mapping in the signal domain
[5, 6] or in the feature domain [7, 8] to directly predict fea-
tures.

Recent work in computer vision has seen notable success
in addressing the problem of poor resolution in modified in-
put data, using a framework broadly referred to as Generative

Adversarial Networks (GANs). Fundamentally, these gains
are achieved by the injection of auxiliary or proxy learning
objectives into more traditional pipelines. These auxiliary ob-
jectives exploit an adversarial relationship between two neu-
ral networks (a generator and a discriminator) to find a Nash
equilibrium in which generating sensible data is the optimal
behavior for the generator [9]. This has the effect of refining
the distribution of the generated data closer to some desirable
outcome relative to a system trained without the auxiliary ob-
jective, e.g., sharper, more realistic generated images.

In light of these successes, in particular that of [9], in-
serting an auxiliary realism objective into a speech denoising
pipeline seems to be a natural avenue to pursue improved
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Fig. 1. Our speech enhancement system is trained in three
steps. (1) The spectral classifier is trained to predict senone la-
bels with cross-entropy criterion (classification loss, LC). (2)
The spectral mapper is pre-trained to map from noisy speech
to clean speech using MSE criterion (fidelity loss, LF). (3)
The spectral mapper is trained using joint loss from both
the clean speech and the outputs of the classifier when fed
clean speech (mimic loss, LM). The gray models have frozen
weights.

5609978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



performance. However, initial experiments with GANs con-
ditioned on noisy speech inputs, in which the discriminator
network was trained to distinguish between real and fake
clean/noisy input pairs, exposed the well-known mode col-
lapse problem endemic to GANs [10]. Results failed to
improve upon simple baselines of noisy-to-clean speech map-
pings trained with only MSE loss. Other attempts have also
failed to improve upon a DNN baseline, as in [11]. We spec-
ulate that the difference in performance from experiments
in the visual domain may be due to the relatively non-local
structure of the speech signal in the frequency axis (i.e. har-
monic structure), as well as the smoothness of speech features
as compared to images.

The work described in this paper is motivated by the ob-
servations of over-simple outputs from GANs that seemed to
be stuck in mode collapse orbits. We hypothesize that a train-
ing objective that can provide stronger feedback than a simple
real or fake determination will be better able to guide the pa-
rameters of the denoising network towards producing output
that behaves like actual speech. While our resulting system
retains none of the properties of being generative or trained
adversarially, the insight to use an auxiliary task to improve
the denoising process is drawn from that body of work.

The auxiliary global objective that we add to our local
criterion is the behavioral loss of a classifier trained on clean
speech. We call this additional objective the mimic loss. First,
we train a senone classifier using clean speech as input, and a
spectral mapper network [8, 6] using parallel noisy and clean
speech frame pairs. Next, we freeze the weights of the acous-
tic model and join our pre-trained spectral mapper to it. We
then pass noisy speech frames to train our spectral mapper
with a joint objective, i.e. a weighted sum of the traditional
fidelity loss and mimic loss. The mimic loss, then, is MSE
loss with respect to the softmax (or pre-softmax) outputs of
the classifier fed with the corresponding clean speech frame.
See figure 1 for a graphical depiction of the model.

This technique of using one model to teach another was
proposed by Ba and Caruna [12] for the task of model com-
pression. In their work, they introduce student-teacher learn-
ing, where separate teacher and student models are trained to
do the same task. Mimic loss, on the other hand, is used to
train the student model to do a different task from the teacher
model.

2. PRIOR WORK

To deal with noise, many DNN based methods have been pro-
posed to improve the robustness of ASR systems. In acoustic
modeling, using Convolutional Neural Networks (CNNs),
such as in [13] and Long Short Term Memory Networks
(LSTMs) in [14] has resulted in an improvement in perfor-
mance. LSTMs have also been successfully used as speech
enhancement front-ends in [15, 14].

Spectral mapping has been used to generate clean speech

signals. However, in [8, 7] they use only a local learning
objective. Student-teacher networks have been used to im-
prove the quality of noisy speech recognition [16, 17, 18].
Our model uses mimic loss instead of student-teacher learn-
ing, which means the speech enhancer is not jointly trained
with a particular acoustic model. This speech enhancer could
be used as a pre-processor for any ASR system, or for another
similar dataset. This modularity is the strength of mimic loss.

3. SYSTEM DESCRIPTION

In this section, we will describe the major components of our
system: namely, the spectral mapper, the spectral classifier,
and the overall framework binding the two together.

3.1. Spectral mapping

Spectral mapping improves performance of the speech rec-
ognizer by learning a mapping from noisy spectral patterns
to clean features. We train a DNN-based spectral mapper for
feature denoising. In our previous work [7, 8], we have shown
that a DNN-based spectral mapper, which takes noisy spec-
trogram as input to predict clean filterbank features for ASR,
yields good results on the CHiME-2 noisy and reverberant
dataset.

Specifically, we first divide the input time-domain sig-
nals into 25-ms frames with a 10-ms frame shift, and then
apply short time Fourier transform (STFT) to compute log
spectral magnitudes in each time frame. For a 16 kHz sig-
nal, each frame contains 400 samples, and we use 512-point
Fourier transform to compute the magnitudes, forming a 257-
dimensional log magnitude vector. Each noisy spectral com-
ponent xkm for frequency k at time slice m is augmented on
the input by the deltas and double deltas, as well as a five
frame window (designated x̃km = [xkm±5]), leading to the di-
mensionality of x̃m being 257 · 3 · 11 = 8481. Similarly, we
define ym to be the clean spectral slice at time m.

We then use a feed-forward neural network f(·) to map
noisy spectral slices x̃m to clean spectral features ym using
an MSE loss function, which we call fidelity loss.

LFIDELITY(x̃m, ym) =
1

K

K∑
k=1

(ykm − f(x̃m)k)2 (1)

3.2. Spectral classifier

The spectral classifier is similar to the traditional DNN acous-
tic model trained to classify a stacked clean spectral pattern
ỹm to its corresponding senone class zm. We train the classi-
fier using a cross entropy criterion; critically, once the classi-
fier is trained, we freeze the weights as a model of appropriate
behavior under clean speech.
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3.3. Joint loss

We can define the mimic loss as the mean square difference
between aD-dimensional representation g within the spectral
classifier evaluated on clean speech ym and its paired cleaned
speech f(x̃m):

LMIMIC(˜̃xm, ỹm) =
1

D

D∑
d=1

(g(ỹm)d − g(f̃(x̃m))d)2 (2)

We experimented with two different representations for g(·):
the posterior output of the senones after softmax normaliza-
tion (post-softmax) and the layer outputs prior to the softmax
normalization (pre-softmax).

While training the speech enhancer, we found that using
only mimic loss was not enough to allow the model to con-
verge. We speculate that the task of predicting senones is too
different from the task of predicting clean speech for the error
signal to drive the output of the speech enhancer to actually
look like speech. Combining the fidelity and mimic losses
into a joint loss allows the enhancer to better imitate the be-
havior of the classifier under clean speech while keeping the
projection of noisy speech closer to clean speech.

LJOINT = LFIDELITY + αLMIMIC (3)

The hyper-parameter α is used to ensure that both of the
losses that make up the joint loss have a similar magnitude.
We used 0.1 for pre-softmax and 1000 for post-softmax.

4. EXPERIMENTAL SETUP

We evaluate the effectiveness of our proposed method on
Track 2 of the CHiME-2 challenge [19], which is a medium-
vocabulary task for word recognition under reverberant and
noisy environments without speaker movements. In this task,
three types of data are provided based on the Wall Street
Journal (WSJ0) 5k vocabulary read speech corpus: clean, re-
verberant and reverberant+noisy. The clean utterances are ex-
tracted from the WSJ0 database. The reverberant utterances
are created by convolving the clean speech with binaural
room impulse responses (BRIR) corresponding to a frontal
position in a family living room. Real-world non-stationary
noise background recorded in the same room is mixed with
the reverberant utterances to form the reverberant+noisy set.
The noise excerpts are selected such that the signal-to-noise
ratio (SNR) ranges among -6, -3, 0, 3, 6 and 9 dB without
scaling. The multi-condition training, development and test
sets of the reverberant+noisy set contain 7138, 2454 and 1980
utterances respectively, which are the same utterances in the
clean set but with reverberation and noise at 6 different SNR
conditions.

Our system is monaural. In our experiments, we simply
average the signals from the left and right ear. A GMM-HMM
system is built using the Kaldi toolkit [20] on the clean utter-
ances in the WSJ0-5k to get the senone state for each frame
of the corresponding noisy-reverberant utterances. The ini-
tial clean alignments are obtained by performing forced align-
ment on the clean utterances. To refine the initial clean align-
ments, we further trained a DNN-based acoustic model using
the filterbank features of the clean utterances, and re-generate
clean alignments. These clean alignments are used as the la-
bels for training all the acoustic models in this study. Note
that the DNN-HMM hybrid system built on the clean utter-
ances is a powerful recognizer. It achieves 2.3% WER on the
clean test set of the WSJ0-5k dataset.

4.1. Description of the acoustic model

In order to determine the effectiveness of the additional cri-
terion, we train a model using the denoised features with an
off-the-shelf Kaldi recipe. The DNN-HMM hybrid system
is trained using the clean WSJ0-5k alignments generated us-
ing the method stated above. The DNN has 7 hidden layers,
with 2048 sigmoid neurons in each layer and a softmax out-
put layer. Splicing context size for the filter-bank features
was fixed at 11 frames, with the minibatch-size being 1024.
After that, we train the DNN with sMBR sequence training
to achieve better performance. We regenerate the lattices af-
ter the first iteration and train for 4 more iterations. We use
the CMU pronunciation dictionary and the official 5k close-
vocabulary tri-gram language model in our experiments.

4.2. Description of the spectral classifier

The spectral classifier network is a multilayer feed-forward
network which classifies clean speech frames as one of 1999
senone labels. We use 6 layers of 1024 neurons with Leaky
ReLU activations and batch normalization between all the
layers. While training the spectral classifier on clean speech,
we apply softmax after the topmost layer, and use a cross en-
tropy criterion to teach the network to produce senones.

Spectral input to Kaldi CE WER sMBR WER

No enhancement 18.0 17.3
Enhancement via fidelity loss 17.5 16.5
Enhancement via joint loss

w/ post-softmax mimic loss 16.5 15.7
w/ pre-softmax mimic loss 15.7 14.7

Table 1. Experimental results on the CHiME2 test set; CE
WER is the word error rate of a DNN-HMM hybrid system
trained using a cross-entropy criterion. sMBR WER is the
error rate after sequential minimum Bayes risk training.
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Enhancement -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

None 29.8 22.3 17.6 13.4 10.9 9.7
Fidelity loss 29.3 20.6 16.2 12.4 10.9 9.2
Joint loss 25.9 19.6 14.8 10.9 9.0 8.0

Table 2. Experimental results on the CHiME2 test set, bro-
ken down across different SNRs. Mimic loss based on pre-
softmax units. Bold indicates the best performing system for
each evaluation subset.

4.3. Description of the spectral mapper

The spectral mapper is composed of a simple two-layer feed-
forward network with 2048 neurons in each layer. The fact
that this model is simple means it can be used in some low-
resource situations, and is fast to use. Note that mimic loss
can be applied to improve the results of any kind of speech
enhancer. To regularize the network, we use batch normal-
ization and a dropout rate of 0.5 between every layer. We
also use ReLU activations after each layer. The classifier and
mapper are written using TensorFlow1.

4.4. Results

We see in Table 1 that the outputs of the recognizer before
the softmax provide a better target for the noisy speech rec-
ognizer, as suggested in [12], even though our setup is quite
different from theirs. The difference in performance between
pre- and post-softmax targets may be due to a mismatch
between target domain and loss criterion; ongoing work sug-
gests that a cross-entropy mimic loss on post-softmax targets
performs similarly to MSE on pre-softmax. Furthermore, the
information loss in the softmax normalization may “broaden”
the allowable spectral mappings, harming generalization.
This suggests that it is helpful for the noisy recognizer not
only to have the same targets as the clean recognizer, but also
to learn to behave in the same way as the clean recognizer.

1Code at https://github.com/OSU-slatelab/actor critic specmap

Study WER

Wang et.al [1] 10.6
Weninger et.al[15] 13.8

proposed approach 14.7
Narayanan-Wang[4] 15.4
Chen et. al [14] 16.0

Table 3. Performance comparison with other studies on the
CHiME2 test set.

We also demonstrate this fact by training the noisy speech
recognizer using hard targets rather than the soft targets of
mimic loss. This caused the joint loss in the spectral mapper
to diverge, providing more evidence that the noisy speech rec-
ognizer must learn to mimic the behavior, not just the targets
of the clean speech recognizer. Finally, in Table 2 we break
down our results into different SNRs and see that the gains
are consistent over all Signal-to-Noise levels.

4.5. Comparison with other systems

For context, we show in Table 3 the performance of our sys-
tem relative to other published results in the field. The better-
performing models in this list use more sophisticated models
(like RNNs and LSTMs) for front-end speech enhancement
[14, 15] and acoustic modeling [14], as well as noise-invariant
features [1] (e.g., PNCC, MRCG). We use an off-the-shelf
Kaldi recipe using DNN-HMM to do speech recognition, as
well as a simple 2 layer feed-forward network to do spectral
mapping. Again, mimic loss can theoretically be used to im-
prove the results of any front-end system.

5. CONCLUSION

We have proposed a speech enhancement criterion, called
mimic loss, which can be used to produce speech that is use-
ful for downstream ASR tasks. The mimic loss comes from
comparing the outputs of a frozen clean speech recognizer,
before softmax is applied, on clean and enhanced speech.
This configuration allows the speech enhancement output to
be used as clean speech for any downstream task. We see that
with mimic loss, the spectral mapper learns to produce more
detailed speech data, retaining features that fidelity loss alone
fails to model. Mimicking the behavior of the pre-softmax
layer of the classifier was superior to mimicking the output
of the senone posterior estimates; in general, the lower error
rates show that these features are helpful for downstream
tasks.

In future work, we propose to extend this work by match-
ing every layer of the phone recognizer, rather than just the
inputs and outputs. We could also use a variety of models
for speech enhancement to demonstrate the effectiveness of
mimic loss. Another avenue is to evaluate the output of our
system in multiple domains to determine the effectiveness of
this approach at learning domain-invariant representations of
speech. Finally, we can train a more sophisticated acoustic
model, rather than using an off-the-shelf Kaldi recipe.
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