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ABSTRACT

Although great progress has been made in automatic speech recogni-
tion (ASR), significant performance degradation still exists in noisy
environments. Based on our previous introduced very deep CNNs,
this paper further integrates residual learning to evaluate very deep
convolutional residual network (VDCRN) in noisy conditions, which
shows more powerful robustness. Then, cluster adaptive training
(CAT) is developed on the VDCRN to reduce the mismatch between
the training and testing in noisy scenarios. Moreover, the advanced
future-vector assisted LSTM-RNN LM is proposed to achieve a fur-
ther gain. All the proposed approaches are evaluated on Aurora4
and show a significant improvement for each technology. The fi-
nal system achieves 3.09% WER on Aurora4, which is approaching
humans’ performance on this task. This is a new milestone for noise-
robust ASR on this benchmark.

Index Terms— robust speech recognition, very deep convolu-
tion residual network, cluster adaptive training, future-vector

1. INTRODUCTION

In recent years, significant progress has been observed in automatic
speech recognition (ASR) due to the introduction of deep neural net-
work based acoustic model [1, 2]. However, these systems still per-
form poorly in noisy environments [3], and previous research has
revealed that acoustic mismatching between training and testing still
leads to a great performance degradation even with the deep learn-
ing technologies [4, 5]. Thus noise robustness is still a key issue in
allowing ASR systems to have a wider range of use cases.

Many technologies [6, 7, 8] have been proposed to handle the
difficult problem of mismatch between training and testing in the
noisy speech recognition scenario. Those methods can be grouped
into two categories: feature enhancement on the front-end (denois-
ing or dereverberation) [9, 10] and acoustic modeling with adapta-
tion on the back-end [3]. In this paper, we focus on the technologies
on the back-end, which can improve the robustness on ASR.

The convolutional neural network has shown lower word er-
ror rate (WER) than standard fully connected feed-forward DNN in
speech recognition either with the shallow structure [11] or with the
very deep structure [12, 13]. More recently in [14, 15], our previ-
ous works have shown that very deep CNN (VDCNN) particularly
shows superior noise robustness than other models under the noisy
scenarios. In this work, we integrate batch normalization [16] and
residual learning [17] into our previous VDCNN to construct very
deep convolutional residual network (VDCRN). We discover that
VDCRN can further improve the model robustness and gain bet-
ter performance. Then, adaptation techniques are developed based
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on VDCRN. Inspired by the success of our previous work on clus-
ter adaptive training (CAT) for DNN [18], the similar idea is further
extended to filters or feature maps in VDCRN, which utilizes the
filter or feature map as the basis in adaptive training. CAT for VD-
CRN can reduce the mismatch between training and testing, and im-
prove WER dramatically. Moreover, an advanced LSTM-RNN LM
with the assistance from future-vector is proposed and implemented
to further improve the system performance under noisy conditions.
A comprehensive investigation and an in-depth analysis of all these
technologies are performed. Experimental results on the noisy Au-
rora4 task show that very promising performance can be achieved
with the proposed methods, even without using front-end denoising.
Finally error analysis and performance comparison between humans
and machines are performed on this noisy speech recognition task.

2. ADAPTIVE VERY DEEP CONV-RESIDUAL NETWORK

2.1. Very deep convolution residual network

The main difference between CNN and DNN is the convolutional
operation, which can extract and model the local information in a
more effective mode, and we use ⊗ to represent it. A convolution
layer consists of #outchannel×#inchannel filters. The i-th out-
put feature map of layer l is given by

ol
i = σ(

N∑
j=1

W l
i,j ⊗ ol−1

j ⊕ bli) (1)

where ol
i and ol−1

j are feature maps in the current layer l and previ-
ous layer l − 1 respectively. W l

i,j is the filter between input feature
map j and output feature map i at layer l. bli is a bias applied to the
whole feature map, and ⊕ indicates each element in the feature map
plus the same scalar bli. σ is the activation function, which is typi-
cally sigmoid or ReLU. N is the number of output feature maps. A
pooling layer is a layer that performs down-sampling on the feature
maps of the previous layer. In this work, max-pooling is used.

More recently VDCNNs, which have many convolutional layers,
have been successfully used in ASR [12, 13, 19], and our previous
work has shown that VDCNN can particularly get a huge improve-
ment in noisy scenarios compared to DNN, CNN and even RNN
[14, 15]. The structure of VDCNN is shown in the right part of Fig.
1 (a). It contains 5 blocks separated by the pooling operation, and
each block contains two convolution layers and one pooling layer.
The model configuration, such as [3× 3, 64] indicates that the layer
uses a 3× 3 filter and the output contains 64 feature maps.

To better train the model with increased depth, batch normal-
ization and residual learning are further incorporated to form a new
model in this work, which is named very deep convolution residual
network (VDCRN). It is mainly motivated by the great success of
ResNet in image recognition [17] and telephone speech recognition
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Fig. 1: (a) The structure of proposed VDCRN. (b) CAT-VDCRN with feature map bases (c) CAT-VDCRN with filter bases

[20, 21], and we want to see how it will perform in the noisy con-
ditions. The designed very deep convolutional residual network is
shown as Fig. 1 (a). Residual block is used to replace each block in
previous VDCNN (two convolutional layer with one pooling layer in
VDCNNs). Two kinds of res-block are designed, shown as the left
part of Fig. 1 (a). Since the number of feature maps will double at
the first, second and fourth block, a convolution layer with 1×1 filter
is applied in the skip connection and the feature maps are increased
to an equal number, which is shown as the bottom left in Fig. 1 (a).
For the blocks with the same feature maps number as the previous
block, e.g. the third and fifth block, the direct skip connection can
be used in the res-block, which is shown in the top left in Fig. 1 (a).

2.2. Cluster adaptive training for VDCRN

Adaptive training is an effective method to reduce the mismatch be-
tween training and testing conditions, and cluster adaptive training
(CAT) are designed for proposed VDCRN in this work. CAT was
firstly proposed on GMM-HMM [22], then extended to DNN-HMM
in our previous work [18, 23]. The basic idea is that multiple bases
are first trained to construct the canonical parametric space, and then
during adaptation an interpolation vector is estimated to combine the
bases into the final adapted model.

The bases selection is the most important in CAT, which forms
the canonical parametric space. Two kinds of bases can be used
when applying CAT in the proposed VDCRN.

2.2.1. Feature map bases

At each convolution layer, an output feature map is generated by
summing up over all input feature maps convoluted by its own filter
as shown in Equation 1. The first method utilizes each input fea-
ture map as a basis and interpolate them with a speaker dependent
interpolation vector. The output feature map is given by

osl
i = σ(

N∑
j=1

λsl
j (W l

i,j ⊗ ol−1
j )⊕ bli) (2)

where osl
i ,o

l−1
j are i and j feature map in two consecutive layers.

λsl
j is a scalar coefficient for the cluster j at layer l for speaker s. It

is worth noting that in this case, the number of clusters is equal to
the number of input channels (feature maps).

λsl
j can be extended to a matrix, which will be applied on the

feature maps with the element-wise multiplication. The new speaker
adapted output feature map is given by

osl
i = σ(

N∑
j=1

Λsl
j � (W l

i,j ⊗ ol−1
j )⊕ bli) (3)

where Λsl
j is a matrix, and � indicates element-wise multiplication.

The structure is illustrated in the middle part of Fig. 1 (b), enclosed
in the blue dotted line. There are four input feature maps and one
output feature map, W1,j , 1 ≤ j ≤ 4 is the filter and λs

j is the
speaker dependent coefficient, it can be a scalar or matrix.

2.2.2. Filter bases

Another way is to use a filter basis rather than a single filter for each
input/output feature map pair. The speaker adapted output feature
map is given by

W sl
i,j =

P∑
k=1

λsl
k W

l
i,j,k (4)

osl
i = σ(

N∑
j=1

W sl
i,j ⊗ ol−1

j ⊕ bli) (5)

where W sl
i,j is a speaker dependent filter for layer l given by interpo-

lating the filter bases using a speaker specific vector λsl, and W l
i,j,k

is the kth element of filter bases. P is the number of filter bases.
In additional, the Equation 5 can be rewritten as Equation 6, and

CAT can also be interpreted as splitting a conv-layer intoP sublayers
to represent different speaker or environment characteristics.

osl
i = σ((

P∑
k=1

λsl
k

N∑
j=1

W l
i,j,k ⊗ ol−1

j )⊕ bli) (6)

Similarly, each interpolation scalar coefficient λsl
k can also be

extended to a matrix, which will be applied on the feature maps using
element-wise multiplication, and the formulation for adapted output
feature map becomes

osl
i = σ((

P∑
k=1

Λsl
k �

N∑
j=1

W l
i,j,k ⊗ ol−1

j )⊕ bli) (7)
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where � denotes element-wise multiplication.
CAT with filter bases is illustrated in the right part of Fig. 1 (c),

enclosed in the blue dotted line. W1,j,1,W1,j,2, 1 ≤ j ≤ 4 are the
filter bases, and in this work we used two clusters for filter bases. λs

j

is the speaker dependent coefficient, and it can be a scale or matrix.
W s

1,j is a speaker adapted filter.

3. ADVANCED LANGUAGE MODELING

We introduced a new LSTM-RNN LM in this task, which is en-
hanced with the future vector, and it is named feature-vector LSTM-
RNN LM (FV-LSTM RNN LM).

Traditional LSTM-RNN LM only predicts a single word xi+1

when given the history {x1, ..., xi} [24]. However, LVCSR is a
sequence-level task, so it should benefit from the sequence level
knowledge if we can integrate the sequence information into LM.
Future vector is one kind of sequence vectors [25, 26]. Thus we
are inspired to incorporate the future vector into the normal LSTM-
RNN LM, so that the new LM is able to predict long term future
rather than only immediate word, which can finally contribute the
system performance.

Three steps are designed to construct our new FV-LSTM RNN
LM: (1) ground truth future vector: a reversed LSTM-RNN LM with
reversed input sequence order is first trained, which means that this
LM predicts the previous word with the given future. The outputs
of the last hidden layer in this reversed LSTM-RNN LM is extracted
as the ground truth future vector zi. (2) predicted future vector: the
above feature-vector zi cannot be used directly due to that the future
words in the real implementation are unknown. Accordingly an ad-
ditional forward LSTM-RNN is trained to predict the future vector,
and the mean squared error (MSE) criterion between the predicted
future vector yi and the ground truth future vector zi is used to op-
timize this prediction model. (3) FV-LSTM RNN LM: after the pre-
diction model training, predicted future vector yi can be combined
with original input xi to train the FV-LSTM RNN LM.

This FV-LSTM RNN LM has been demonstrated to achieve bet-
ter performance than normal LSTM-RNN LM in our recent work
[27]. Moreover, it reveals that there is a huge complementarity be-
tween this new and conventional LSTM-RNN LMs. More details
can be found in our recent work [27], and it is evaluated on the noisy
ASR task in this work.

4. EXPERIMENTS

4.1. Experimental setup and baseline systems

The proposed approaches are implemented and compared on the
standard Aurora 4 task, which has multiple additive noise conditions
as well as channel mismatch. The Aurora 4 task is a medium vocabu-
lary speech recognition task based on the Wall Street Journal (WSJ0)
corpus [28]. It contains 16 kHz speech data in the presence of addi-
tive noises and linear convolutional channel distortions, which were
introduced synthetically to clean speech from WSJ0. The multi-
condition training set with 7138 utterances from 83 speakers in-
cludes a combination of clean speech and speech corrupted by one
of six different noises at 10-20 dB SNR, and some data is from the
primary Sennheiser microphone and some are from the secondary
microphone. As for the training data, the test data is generated using
the same types of noise and microphones, and these can be grouped
into 4 subsets: clean, noisy, clean with channel distortion, and noisy
with channel distortion, which will be referred to as A, B, C, and D,
respectively.

Gaussian mixture model based hidden Markov models (GMM-
HMMs) are first built with Kaldi [29] using the standard recipe, and
consists of 3K clustered states trained using maximum likelihood es-
timation with the standard Kaldi MFCC-LDA-MLLT-FMLLR fea-
tures. After the GMM-HMM training, a forced-alignment is per-
formed to get the state level labels. All the neural networks were
built using CNTK [30] in this work, and they were trained using
cross-entropy criterion (CE) with stochastic gradient descent (SGD)
based backpropagation (BP) algorithm. The task-standard WSJ0 bi-
gram with 5K-word dictionary is used for decoding, and the standard
testing pipelines in the Kaldi recipes are used for decoding and scor-
ing. For better comparison, VDCNN model proposed in our previous
work [14] is also built as the baseline, and listed as the first line of
Table 1. Concluded as [14], VDCNN shows significantly better per-
formance than DNN or LSTM-RNN, particularly for the noisy task
(more details can be found in [14]).

4.2. Evaluation on adaptive very deep conv-residual network

4.2.1. Very deep convolutional residual network

VDCRN was evaluated first, and the results comparison on Aurora4
is shown as the second line in Table 1. It is observed that the appli-
cation of res-block further significantly improves the performance in
noisy scenarios, and the proposed VDCRN obtained another 8.0%
relative improvement compared to the strong baseline VDCNN.
Most gains are from the noisy subsets B, C and D, which further
demonstrates the noise-robustness of VDCRN.

Systems A B C D Avg.
VDCNN [14] 3.27 5.61 5.32 13.52 8.81
VDCRN 3.25 5.41 4.75 12.16 8.10

Table 1: WER (%) comparison of VDCNN / VDCRN on Aurora4.

4.2.2. CAT using different bases

Cluster adaptive training for VDCRN was then evaluated. As de-
scribed in section 2.2, the bases can be defined in two modes, i.e.
feature map bases and filter bases, and the speaker-dependent inter-
polation parameter λs can also be two ways, i.e. scalar or matrix.
In this experiment, CAT was applied at the first convolution layer
in the first block of VDCRN, and the related results are illustrated
in Table 2. It is observed that using a scalar interpolation weight
λs is useless, and in contrast the matrix based speaker-dependent
interpolation parameter can get very large improvements within the
CAT-VDCRN. Both bases types can give significant WER reduc-
tion with the appropriate interpolation weight λs, and the filter base
seems slightly better. The system using filter bases with matrix inter-
polation weight λs reduces the WER from 8.10% to 6.01%, which
is a relative 25.0% gain. We did the further development based on
this system in the following experiments.

Systems Base λs A B C D Avg.
VDCRN - - 3.25 5.41 4.75 12.16 8.10

+ CAT
fmap scalar 3.40 5.80 5.68 12.14 8.34

matrix 2.69 4.17 3.81 8.96 6.09

filter scalar 3.33 5.52 5.31 13.12 8.61
matrix 2.65 4.06 3.38 8.95 6.01

Table 2: WER (%) Comparison of CAT with different bases.
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4.2.3. CAT on different layers and residual blocks

The comparison of applying CAT on different convolutional layers
of the first block is performed. In addition to only do the CAT on the
first convolution layer, it is extended to both two layers in the first
block. The top part of Table 3 shows that implementing CAT on both
convolutional layers can get further small improvement compared to
the single-layer CAT adaptation.

#Res-Block #Layer A B C D Avg.

B1 L1 2.65 4.06 3.38 8.95 6.01
L1+L2 2.95 4.17 3.70 8.55 5.92

B2 L1+L2 2.95 4.31 3.70 9.06 6.21
B3 L1+L2 2.84 4.28 3.66 9.49 6.37

Table 3: WER (%) Comparison of applying CAT on different con-
volutional layers and residual blocks of VDCRN on Aurora4. L1
and L2 indicate the 1st and 2nd convolution layers in each block,
and B1∼B3 indicate residual block 1∼block 3 in VDCRN.

As shown in the Fig. 1 (a), the VDCRN is separated by several
residual blocks by the pooling operations. The CAT structure can
be performed on different blocks. We did experiments with CAT-
VDCRN on Block 1∼3, and both two convolutional layers in each
block are applied with CAT. The comparison of different block posi-
tions is shown in the bottom part of Table 3. It indicates that the per-
formance decreases when applying CAT on higher residual blocks,
and the first block is the best position for cluster adaptive training.
In summary, the second line of Table 3 is also the best configuration
of the proposed CAT-VDCRN.

4.3. Evaluation on language model and system combination

In addition to CAT-VDCRN, LSTM-RNN with factor aware training
was also built (FAT-LSTM) [31, 32]. The auxiliary feature was 100-
dim i-vector and it was directly concatenated with acoustic feature
as the inputs. The system combination using joint decoding is then
implemented [15] (a weighted combination of state-level acoustic
log likelihoods from individual models, denoted as ⊗), and results
are listed in the top part of Table 4. It is interesting to find that
although the performance gap within CAT-VDCRN and FAT-LSTM
is huge (3.7% absolute), the complementarity is still obvious and the
combination further obtains a significant gain.

Finally the LM rescoring is applied on the 100-best from the
joint-decoding system. LM is evaluated from the task-standard
WSJ0 bigram to 5-gram, conventional forward LSTM-RNN LM
and the newly proposed FV-LSTM RNN LM (all LMs are trained
with the same WSJ0 data), and the results are illustrated as the bot-
tom part of Table 4. It shows that both the higher order ngram and
RNN LMs can get another large gain upon the acoustic model ad-
vancement, and the new proposed FV-LSTM RNN LM can achieve
further significant WER reduction when combined with the tradi-
tional LMs. Our best system obtained 3.09% WER on Aurora4,
which is a huge progress compared to the previous work on this
task. Particularly, the WERs on subset B and C are closer to that on
A, and the WER on subset D is also reduced dramatically.

4.4. Error analysis within humans and machines

In this section, we want to do the error analysis and performance
comparison between humans and machines for noisy speech tran-
scription, similar as that for the telephone speech [20]. Three na-
tive English speakers are recruited to transcribe each noisy condi-
tion speech in Aurora4 for the first pass, and one additional speaker
is asked to do the quality checking for the second pass. We want to
see how humans perform on the corrupted noisy speech.

Systems A B C D Avg.
CAT-VDCRN (I) 2.95 4.17 3.70 8.55 5.92
FAT-LSTM (II) 3.75 6.87 5.64 13.99 9.61

(I) ⊗ (II) 2.82 3.90 3.53 8.26 5.67
5-gram 1.70 2.46 2.00 6.60 4.15

5-gram + LSTM 1.55 2.03 1.89 5.60 3.51
5-gram + LSTM + FV-LSTM 1.10 1.63 1.59 5.13 3.09

Humans on Aurora4 1.58 1.92 1.61 2.88 2.28

Table 4: WER (%) Comparison of proposed systems on Aurora4

Table 5 show the top five types of sub/del/ins errors for both
ASR and human transcripts on Aurora4. It reveals that the top er-
ror patterns seem very similar for the substitutions and deletions be-
tween humans and machines, and short function words are easier to
be deleted for both humans and ASR. In contrast the insertion errors
are not so correlated between ASR and humans, and both short func-
tion words and long notional words could be inserted by ASR sys-
tems on this noisy task. The overall error numbers broken down by
three error types are shown as the last line of Table 5. We see that ma-
chines have slightly more errors on Sub and Ins, and in contrast dele-
tion errors are much more than those of human (more than double). It
shows that the corrupted speech is more prone to be mis-recognized
as non-words, and the deletion error seems one main challenge for
noise-robust speech recognition. This observation is different from
the error analysis conclusion for telephone speech recognition [20].

Humans’ performance on Aurora4 is listed as the last line of Ta-
ble 4. Compared with our best system, we see that our ASR system
is approaching humans’ level on Aurora4, less than absolute 1.0% on
averaged WER. More precisely, machines’ accuracy has been com-
parable on condition B and C, which has either additive noise or
channel distortion. In contrast the performance gap on condition D
is still very large. It indicates that scenarios with both additive noise
and channel distortion are much more complex and still very hard to
be addressed, and it is also the main difficult research direction for
noise-robust ASR in the future.

Sub Del Ins
ASR / Human ASR / Human ASR / Human

56: a-the/46: its-it’s 92: the/43: the 14: education/19: the
28: ranged-range/33: a-the 55: in/14: in 14: era/14: and

20: isn’t-is/23: adviser-advisor 49: it/10: of 14: convert/11: is
18: of-a/14: ranged-range 42: of/8: that 11: the/11: in

17: and-in/13: the-a 41: to/8: a 8: dollar/7: of
all:1453 / 1258 all:676 / 286 all:190 / 168

Table 5: Most common substitutions/deletions/insertions for ASR
system and humans on Aurora4. The number indicates the times
each error occurs. For substitutions, two words means the true word
in the reference and the wrong word in the hypothesis.

5. CONCLUSION

In this paper, very deep convolutional residual network (VDCRN)
with residual learning is first introduced, which shows better robust-
ness in noisy speech recognition. Then cluster adaptive training is
developed based on VDCRN, and it can obtain significant gains un-
der all kinds of noisy conditions. Finally a more advanced LSTM-
RNN LM with the assistance from future vector is proposed and
implemented to further improve the system in noisy scenarios.

The new approaches are evaluated on Aurora4. The final system
with the proposed methods achieves a WER of 3.09%, even without
feature enhancement. To our knowledge this is the best published
result on Aurora4, and it is even very close to humans’ performance
on this task.
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