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ABSTRACT

The speech intelligibility index (SII) has been widely used as
an objective method of predicting speech intelligibility, but
its traditional form is most effective predicting speech intelli-
gibility scores under stationary noise but not more challeng-
ing conditions (e.g., competing noise interference). To ad-
dress this limitation, the present work extended the SII model
to predict the intelligibility of speech in both steady speech-
spectral noise (SSN) and dual-talker speech (DTS), by using
a time-weighted function that accounted for the relative per-
ceptual importance of vowels and consonants in speech in-
telligibility. The performance of the new time-weighted SII
(TW-SII) was compared to the other two well-known meth-
ods, i.e., the time-averaged SII (TA-SII) and coherence SII
(CSII). Experimental results showed the intelligibility predic-
tion accuracy of the three methods was similar for speech in
SSN, but the prediction by TW-SII was more accurate than
those by TA-SII and CSII for speech in DTS. The possible ap-
plications and limitations of the present intelligibility model
were analyzed and discussed.

Index Terms— speech intelligibility index, time-weighted,
vowel, consonant

1. INTRODUCTION

Speech intelligibility is a measure of the effectiveness of
speech comprehension, and it is an important index for the
evaluation of listening environments, communication de-
vices, or hearing treatment. The desire to evaluate speech
intelligibility objectively has led to the development of sev-
eral computational models. Among many, two representa-
tive models have been developed as international standards:
speech intelligibility index (SII)[1] and speech transmission
index (STI)[2]. The former model mainly addresses the ef-
fect of additive noise and bandwidth reduction, and the latter
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model mainly addresses the reverberation effect.This work
focused on the effect of additive noise, hence it was based on
SII.

The basic idea of SII is that the intelligibility of the speech
signal is the sum of the contributions of several frequency
bands [3]. The equation is given as

SII =

n∑
i=1

Wi ×Ai (1)

where n is the number of frequency bands, and Wi and Ai

are the values of the importance function and the audibility
function at the ith band, respectively[4]. In the calculation
procedure, the speech and noise signals firstly pass a set of
bandpass filters, respectively. The signal-to-noise ratio (SNR)
is calculated in each frequency band. Then, the SNR value is
transferred to an audibility index (Ai) between 0 and 1 by
normalizing SNRs to the dynamic range of the speech level,
and finally the SII value is determined by a weighted sum-
mation of the audibility indexes across frequency bands with
the band importance function. In the standard form, the SNR
value is evaluated according to the long-term spectrum of the
signals, which is reasonable when the additive noise is steady
in amplitude.

When the interfering sounds fluctuate, listeners are able
to catch glimpses of the speech during the short silent periods
of the masking noise, leading to improved speech intelligi-
bility. However, this effect is not taken into account for the
traditional SII model, since the model is independent of the
amount of fluctuation in the noise signal. To address the issue
above, Rhebergen et al. extended the SII by splitting the sig-
nal in each frequency band into short-term frames [5][6]. The
frame length varied across frequency bands. The calculation
of Ai for each frame was the same as before, and denoted as
Ai(t) in equation (2). The Ai value of equation (1) was deter-
mined by averaging Ai(t) values across all frames, using the
following equation

SII =

n∑
i=1

[Wi ×
1

T

T∑
t=1

Ai(t)] (2)
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where T is the number of all frames, and Ai(t) represents the
Ai value for frame t of the ith frequency band. Experimen-
tal results showed that the prediction by this extended model
was better than that of the traditional SII model for sinu-
soidally intensity modulated noise and real speech or speech-
like maskers, but it was still not accurate [7].

In principle, the importance of speech segments for intel-
ligibility varies along time according to their phoneme cat-
egories [8][9][10][11]. Cole et al. studied the relative con-
tribution of vowels and consonants to sentence intelligibil-
ity in English [8]. When the vowel or consonant segments
were replaced with speech-shaped noise within a sentence,
it was found that the vowel-only sentences had a higher in-
telligibility than the consonant-only sentences. Kewley-Port
et al. also confirmed the intelligibility advantage of vowels
for both young normal-hearing listeners and elderly hearing-
impaired listeners [9]. Chen et al. investigated the perceptual
contributions of vowels and consonants to Mandarin sentence
intelligibility, and reported similar results that vowels were
more important than consonants [10]. These speech percep-
tion findings suggest that it is necessary to explore a time-
weighted method for speech intelligibility prediction when
the SII model was applied.

To take account of the relative perceptual importance of
vowels and consonants in sentences, the traditional SII model
was extended with a time-weighted function to predict speech
intelligibility in steady speech-spectrum noise (SSN) and in
the typical competing speech, dual-talker speech (DTS). De-
tails of the new method will be described in Section 2. The
performance of the new method was evaluated by analyzing
the correlation between the predicted scores and human lis-
teners scores, and the correlation was also compared with two
existing methods. The experiments and results will be de-
scribed in Sections 3 and 4, respectively. Finally, the main
findings will be discussed and concluded in Section 5.

2. MODEL
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Fig. 1. Flow diagram for the calculation of the TW-SII model.
A detailed description is given in the main text.

The new time-weighted speech intelligibility index (TW-
SII) was calculated in this way: firstly signals were divided
into vowel and consonant segments, and then they were split

into frames with 8-ms frame length. The SII value of each
frame was calculated using the traditional SII model, and they
were summed across frames for vowels and for consonants,
respectively, denoted as SIIv and SIIc; finally the SII of
the sentence was calculated by equations (3) and (4). Fig-
ure 1 shows the flow diagram of this procedure. The basic
idea to conduct the time-weighted function was to allocate
different weight to vowels and consonants when the SII val-
ues were integrated across time. A similar time weighted
procedure was proposed for estimating the speech intelligi-
bility by Kates et al., called coherence speech intelligibility
index(CSII) [12], in which signals were divided into three cat-
egories (low-, medium-, and high-level) according to signal
amplitude. We adopted and modified their equations for the
time-weighted manipulation in this work.

A linear weighting of the vowel and consonant SII val-
ues was used as equation (3). Then the weighted sum was
transformed to a SII value between 0 and 1 using a logistic
function as equation (4). The weights were constrained to be
positive. The constrained optimization method was used to
obtain the weight value by fitting the model prediction scores
and real listener intelligibility scores [12].
sum = (Wc ∗ SIIc +Wv ∗ SIIv)/frameNum+ b (3)

SII =
1

1 + exp−sum
(4)

where SIIv and SIIc represent the SII values of vowels
and consonants, Wv and Wc represent the weight of vowels
and consonants, frameNum represents the total number of
frames of a sentence, and b represents a bias caused by speech
materials.

3. EXPERIMENT

Firstly, a human behavioral experiment was conducted to col-
lect data for the fitting procedure and obtaining the weight
values. Secondly, the performance of the new model was
evaluated by comparing the scores predicted by the model and
listener scores, and to the performance of the time-averaged
SII model (TA-SII) and coherence SII model (CSII).

3.1. Subjective experiment

3.1.1. Subjects and materials

Twelve native-Mandarin-Chinese listeners with normal hear-
ing (age range 18 to 25 years) participated in the experiment.
There were 4 men and 8 women participants. They were all
students of Peking University and paid for their participation.
The speech material consisted of sentences taken from the
Mandarin Speech Perception (MSP) corpus, which includes
10 lists of 10 sentences, with 7 words per sentence [10]. All
of these sentences were spoken by a female speaker. In addi-
tion, the start and end sampling points of vowels, consonants
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and silence were labeled for each of the sentences in this cor-
pus, which is useful for the calculation of TW-SII. They are
labeled manually by experienced phoneticians based on the
acoustic landmarks observed in the spectrograms. There were
two types of maskers SSN and DTS. A finite impulse response
filter was designed based on the average long-term spectrum
of the MSP sentences, and white noise was filtered to produce
the SSN signal. The DTS masker contained two equal-level
interfering female talkers.

3.1.2. Procedure

The experiment was performed in an anechoic chamber and
the sound was played to listeners through a loudspeaker
(Dynaudio Acoustics, BM6A). The sound level of the tar-
get speech was calibrated at 55 dB SPL. The masker signal
displayed one second earlier than the target, and they ended
simultaneously. Before the formal experiment, each subject
participated in a 10-min training session and was given two
lists of ten MSP sentences. There were four SNRs for each
type of masker: -10, -8, -6, and -4 dB for SSN; -8, -6, -4 and
0 dB for DTS. Totally, eight conditions (2 masker types×4
SNRs) were tested for each subject. During the test, subjects
listened to each trial and verbally repeated the words they
heard. Their responses were recorded and the correct words
were counted by the experimenter.

3.2. Objective intelligibility evaluation

Signals were filtered into 1/3-octave bands for the following
three objective models when the SII values were calculated by
equation (1). As the speech used in this study was Mandarin
Chinese, the frequency important function based on Mandarin
was used for all models[13].

3.2.1. TW-SII

The method described in Section 2 was used for the TW-SII
model. The data collected from the subjective experiments
were divided two groups: the data of 8 subjects were used as
training set to fit the weight values, and the rest of the data
from 4 subjects were used as testing set to compare the scores
predicted by the model with listener scores.

3.2.2. TA-SII

Since the temporal resolution of the auditory system is fre-
quency dependent [14], time constants for the lower fre-
quency bands are larger than those for the higher bands.
Frame lengths ranging from 64ms at the lowest band (160Hz)
to 2ms at the highest band (8000Hz) was used [15]. SII was
calculated by equation (2).

3.2.3. CSII

The experiment based on CSII used the same training set and
test set as TW-SII. The calculation procedure of CSII was
also similar as TW-SII, except that 1) the frame length was
16ms; 2) three categories were defined as high- (Lframe ≥
Lsentence), middle-(Lframe − Lsentence ≥ −10dB), and
low-level (Lframe − Lsentence < −10dB), where Lframe

and Lsentence represent the RMS level of the frame and the
whole sentence, respectively; 3) SII calculation was replaced
by the coherence calculation. More details of this method can
be found in [12].

4. RESULTS

4.1. Subjective experiment

Figure 2 shows the mean scores (correct proportion) averaged
across 12 subjects as a function of SNRs for both masking
conditions. It was obvious that speech intelligibility varied
in a reasonable range. Speech intelligibility was higher in
SSN than in DTS at a certain SNR, since prominent informa-
tion masking was included in the latter masker [16][17][18].
Speech intelligibility in SSN was more sensitive to the varia-
tion of SNR than in DTS, since the former masker was mainly
dominant by energetic masking. These results were consistent
with previous studies [19].

-12 -10 -8 -6 -4 -2 0 2
SNR(dB)

0

0.2

0.4

0.6

0.8

1

co
rr

ec
t r

at
e

SSN
DTS

Fig. 2. Average scores as a function of SNR for SSN (dotted
curve) and DTS masking (solid curve), respectively. Error
bars represent standard deviation.

4.2. TW-SII

The weight values fitted for each of the masker types are
shown as follows
SSN sum = 28.17∗SIIc+74.70∗SIIv −10.39 (5)

DTS sum = 32.65 ∗ SIIc + 15.68 ∗ SIIv − 6.43 (6)

For SSN masking, the consonant weight was much smaller
than the vowel weight, indicating vowels contributed more
than consonants. However, the relative importance between
vowels and consonants was reversed for DTS masking. This
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Fig. 3. The fitting function converges with the increase of the
amount of fitting data. The number represents the amount of
subjects.

pattern fit our assumption, because in SSN masking, conso-
nants were heavily masked due to their low energy, but in
DTS masking consonants could become important due to the
increasing chances for glimpses of consonant in competing
speech [20].

To test the suitability of the testing set size, the mean
square error between the subjective intelligibility and the
model predicted intelligibility was calculated as a function
of the amount of data, as shown in Figure 3. This result
indicated the weight values fitted from 8 subjects data were
reliable.

Figure 4 shows the correct proportion identified by listen-
ers versus the TW-SII model prediction for the test set. Pear-
sons correlation analysis indicated that the predicted scores
were highly correlated with subjective scores for both SSN
(r=0.959, p<0.001) and DTS masking (r=0.942, p<0.001).

4.3. Comparison with other objective intelligibility mod-
els

Similarly, the correlation analysis between the predicted
scores and the subjective scores was also conducted for the
result of the TA-SII model and CSII model. Table 1 shows
the correlation values for each of the three models and each
of the masker types. For SSN masking, the correlation was
slightly higher for TW-SII than for TA-SII and CSII; for DTS
masking, the correlation was markedly higher for TW-SII,
indicating an advantage of the new TW-SII model.

Table 1. Correlations between the predicted scores and sub-
jective scores for each model and each masker type. p value
was less than 0.001 for all of them. Asterisk denotes that
the correlation coefficient was significantly larger than that of
TA-SII or CSII measure.

SSN DTS

TW-SII 0.959 0.942 *
TA-SII 0.911 0.873
CSII 0.957 0.851
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Fig. 4. The proportion of the MSP sentences identified cor-
rectly plotted versus the TW-SII model prediction.

5. DISCUSSION AND CONCLUSION

Earlier work has shown that speech segments (e.g., vowels
and consonants) contained different amounts of intelligibility
information [8][9][10][11]. Vowel-only sentences are more
intelligible than consonant-only sentences. However, this im-
portant guideline on segmental contribution to speech intelli-
gibility has not been reflected in existing intelligibility model.
While many intelligibility models studied the effect of band-
importance function to intelligibility [7][21], this study de-
veloped a new time weighted intelligibility model, which was
based on the traditional SII model but incorporated the per-
ceptional importance of vowels and consonants contained in
speech signal.

The present TW-SII model showed benefit for predicting
speech intelligibility in the presence of interfering sounds,
especially in DTS masking, because the relative importance
of consonants and vowels was introduced in this model. Al-
though the effect of fluctuation existing in maskers was taken
into account by calculating frame-based SII in the TA-SII
model [5][6], the manipulation of averaging SII across frames
smeared the relative importance of temporal segments, e.g.,
vowels and consonants in this work. In the CSII model,
the temporal segments were divided into groups as high-,
medium, and low-levels [12]. This partition was based on
the purely physical characteristic rather than the perceptual
characteristics used in this study. Hence, the prediction by
the latter one could be more accurate in DTS masking.

The conduction of TW-SII relied on the labeled informa-
tion of vowels and consonants, which limit its application for
a general speech corpus. However, it is possible to tag the
segments automatically. We initially tried to obtain the labels
automatically by combining cues of F0 contour, signal enve-
lope and energy, and the TW-SII still showed promising per-
formance. Further work is required to accomplish this totally
automatic model.
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