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ABSTRACT

Phone attributes, known also as distinctive or phonological
features, belong to important classification of the speech
sounds used in automatic speech processing. Training of con-
ventional phone attribute detectors (classifiers), either based
on acoustic measurements or deep learning approaches, re-
quires decent phone boundary segmentation.

This paper proposes a solution to train a phone attribute
detector without phone alignment using an end-to-end phone
attribute modeling based on the connectionist temporal classi-
fication. Experiments, performed for the nasal phone attribute
on the LibriSpeech database, confirm that the proposed sys-
tem outperforms conventional deep neural network detector,
trained even on the same training data. Further improvements
are observed with more training data. Conventional com-
plex system that consists of feature extraction, phone force-
alignment and deep neural network training is replaced by a
more simpler Python package based on PyTorch, released as
open-source.

Index Terms— Phone attributes, nasal sounds, connec-
tionist temporal classification

1. INTRODUCTION

Speech communication is known to be an asynchronous
process due to asynchronous evolution of various articula-
tory feature streams [1]. For example, syllable stress im-
pacts nasality of neighbouring vowels in /ini/ articulation [2].
Velopharyngeal closure during the vowel /i/ is more enhanced
during stressed syllables. The unstressed co-articulated /i/
thus might convey more nasality than unstressed one, and the
nasal phone attribute is asynchronous to the phone [n].

The best current phone attribute detectors are based on
Deep Neural Networks (DNNs) [3, 4] that require phone
alignment to get target training labels. Firstly, this does
not solve asynchronous relation of the phone and phone at-
tributes, and secondly, it makes the training process more
complex as decent acoustic models have to be trained before
the DNN training.

This paper proposes a solution to train a phone attribute
detector without phone alignment. The solution differs from

all previous approaches that required phone alignment either
for bootstrapping of the DNN detector, or delineate nasal re-
gions for acoustic measurements [5, 6, 7]. The proposed so-
lution is based on an end-to-end phone attribute modeling
aiming to simplify the system blocks into a single network
architecture and matching the asynchronous relation of the
phone and phone attributes. There are two major types of end-
to-end architectures, the connectionist temporal classification
(CTC) approach [8] and the attention-based method [9]. The
latter exploits an attention mechanism to perform alignment
between acoustic features and recognized symbols. How-
ever, the basic temporal attention mechanism is too flexible in
the sense that it allows extremely non-sequential alignments.
This is rational for applications such as machine translation
where input and output word order are different [10]. How-
ever in phone attribute detection, the acoustic features and the
corresponding outputs proceed in a monotonic way. Since
CTC permits an efficient computation of a strictly monotonic
alignment using dynamic programming, we propose to train
a CTC-based phone attribute detector.

Experiments are performed on the nasals (the speech
sounds with the nasal phone attribute). Nasality is phe-
nomenon in speech processing, and it has been studied since
1956 [11]. Nasals are the only class of sounds with dom-
inant speech output from nasal cavity instead of the oral
cavity [12]. This gives them some very unique properties and
makes nasals one of the hardest sounds to study. There are
many complex characteristics of nasals, especially in the time
evolution of the spectral domain. In addition, linear predictive
coding models the vowels as an all-pole linear system, except
for nasalized vowels, which have the main nasal resonance
paired with an antiresonance (pole-zero pairs).

The main addressed question of this work was if it is pos-
sible to train a CTC detector without phone alignment that
performs as good as a DNN detector trained with phone align-
ment, on the same training data. Several network architec-
tures were investigated, and evaluated with Equal Error Rate
(EER) rather than only with accuracies reported in previous
works. EER represents a performance point where the true
positive rate (sensitivity) equals the true negative rate (speci-
ficity). The rest of the paper is organized as follows: Section 2
overviews the proposed CTC nasal detector, Section 3 intro-
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duces the experimental setup used for evaluation, and Sec-
tion 4 presents results on various alternatives of the proposed
detector described in Section 2. Section 5 summarises and
concludes the paper.

2. NASAL SOUND DETECTION

2.1. Connectionist Temporal Classification

The connectionist temporal classification (CTC) approach [8]
is an objective function that allows an end-to-end training
without requiring any frame-level alignment between the in-
put and target labels. CTC allows repetitions of output labels
and extends the set of target labels with an additional blank
symbol, which represents the probability of not emitting any
label at a particular time step. It introduces an intermediate
representation called the CTC path. A CTC path is a sequence
of labels at the frame level, allowing repetitions and the blank
to be inserted between labels. The label sequence can be rep-
resented by a set of all the possible CTC paths that are mapped
to it.

For an input sequence X = (x1, ...,xT ), the conditional
probability P (y|X) is then obtained by summing over all the
probabilities of all the paths that corresponding to the target
label sequence y after inserting the repetitions of labels and
the blank tokens, i.e.,

P (y|X) =
∑

ŷ∈Ω(y)

P (ŷ|X) =
∑

ŷ∈Ω(y)

T∏
t=1

P (ŷt|xt) (1)

where Ω(y) denotes the set of all possible paths that corre-
spond to y after repetitions of labels and insertions of the
blank token. The conditional probability of the labels at each
time step, P (ŷt|xt), is estimated using a neural network. The
model can be trained to maximize Equation 1 by using gra-
dient descent, where the required gradients can be computed
using the forward-backward algorithm [8].
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Fig. 1. Architecture of the proposed system.

2.2. Model Architecture

The architecture proposed in this paper is based on Deep
Speech 2 model [13]. As is shown in Figure 1, the bottom of
the network is two layers of convolutions over both time and
frequency domains. Temporal convolution is commonly used
in speech processing to efficiently model temporal invariance
for variable length utterances. Convolution in frequency at-
tempts to model spectral variance due to speaker variability
and it has been shown to further improve the performance
[14].

Following the convolutional layers are bidirectional recur-
rent layers. Different recurrent variants are explored. For re-
current layer l, the output activation hl can be the standard
recurrent operation

hl
t = ϕ(Wlhl−1

t + Ulhl
t−1 + bl) (2)

where Wl is the input-hidden weight matrix, Ul is the recur-
rent weight matrix, bl is the bias term and ϕ is the nonlinear
function. The recurrence can also be achieved through more
complex recurrent units such as the Long Short-Term Mem-
ory (LSTM) units [15] and the Gated Recurrent Units (GRU)
[16]. Current research in speech and language processing has
shown that having a more complex recurrence can allow the
network to model longer temproal dependencies between the
inputs. Though many other variations exist, a recent compre-
hensive study showed that a GRU is comparable to an LSTM
with a properly initialized forget gate bias [17], and GRU con-
tains less parameters and is faster to train. Thus, standard
RNN, GRU and LSTM are investigated as 3 variants of the
nasal detection systems.

After the bidirectional recurrent layers, a fully connected
layer is applied and the output is produced through a softmax
function computing a probability distribution over the target
labels {nasal, nonasal, space, blank}. The model is trained
using the CTC loss function. To accelerate the training proce-
dure, Batch Normalization [18] is applied on hidden layers.

3. EXPERIMENTS

3.1. Data

We used the LibriSpeech database [19] for training of the
baseline and the CTC systems. The data are sampled at 16
kHz, and the training part of the corpus is split into three sub-
sets, with size 100.6, 363.6 and 496.7 hours respectively. In
addition, in this work we used the following sub-sets:

• dev-clean as the development data, 5.4 hours,

• test-clean as the evaluation data, 5.4 hours.

The training sets contain about 25 minutes of recordings
per speaker, and this is limited in the gender balanced dev and
test sets to about 8 minutes.
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3.2. Training

3.2.1. The baseline system

The baseline system is the analysis part of the phonologi-
cal vocoding described by [4], however trained on the Lib-
riSpeech data. The training of the nasal detector requires
decent phone alignment. The alignment was performed by
speaker-adapted GMM model with fMLLR transforms esti-
mated at the speaker level, trained on the whole training data
(960 hours), done by the training scripts provided in [19].

The second step, training of the nasal DNN detector,
starts with frame mapping the phonemes from the align-
ment to the nasal attribute. There are three nasal phones
in English, voiced bilabial nasal [m], voiced alveolar nasal
[n], and voiced velar nasal [N]. The nasal DNN detector has
two output labels, the particular nasal attribute occurs for
the aligned phoneme or not. The training was initialised by
Deep Belief Network pre-training by contrastive divergence
with 1 sampling step (CD1) [20]. The 4 × 1024 DNNs with
the softmax output function were then trained using a mini-
batch based stochastic gradient descent algorithm with the
cross-entropy cost function. The training was performed on
the train-clean-100 training set, and cross-validation
dev-clean set, using the Kaldi ASR framework [21]. The
training accuracy of nasal detector was 98.6% on the training
data, and 98.0% on the cross-validation data.

3.2.2. The CTC system

The CTC system is based on the Deep Speech 2 model [13],
and its open-source implementation1. The proposed CTC
nasal detector is a sequence-to-sequence system. Its model
starts with two layers of 2D convolutions over both time
and frequency domains with 32 channels, 41 × 11, 21 × 11
filter dimensions, and 2 × 2, 2 × 1 stride. Four next bidi-
rectional recurrent layers with 400 hidden units are followed
by one fully connected linear layer with 4 softmax outputs
{nasal, nonasal, space, blank}. The RNN models have
around 3 millions (M) of parameters, GRU and LSTM mod-
els have more parameters, 8.6M and 11.4M, respectively. The
input sequence are values of spectrogram slices, 20 ms long,
computed from Hamming windows with 10 ms frame shifts.
The input sequences are thus the values of the natural loga-
rithm of one plus the magnitude components of the short-time
Fourier transform of the windowed input signal.

The word transcription of the input signal was used to pre-
pare the output sequences. The output (target) sequence was
obtained directly from the letters of the word transcription.
As all the nasal sounds in our data [m,n,N] can be produced
by pronouncing only the letters M and N, the output sequence
was prepared without any lexicon, where all the letters M and
N are converted into the nasal labels, all the other letters into

1https://github.com/SeanNaren/deepspeech.pytorch

the nonasal labels, and their repetitions were replaced by the
single label. The space denoted the word boundary.

The variants of the CTC nasal systems, as described in
Section 2, are trained on the same training data as the baseline
DNN nasal detector. We used 35 epochs to train all the models
used for further evaluation.

4. RESULTS

We evaluated both the baseline DNN and CTC detectors on
the same test-clean data set. We force-aligned the test
set with the acoustic models trained on whole training Lib-
riSpeech data (approximately 960 hours), similarly as done
for the DNN baseline alignment.

We computed then the phone-attribute posterior proba-
bilities by running forward pass of the both detectors, and
counted hits of nasal and non-nasal segments. A single oc-
currence of the higher probability than a threshold within the
phone segment was consider as a hit. The thresholds were
varied to obtain the EER of the true positive and the true neg-
ative hits. While for the DNN detector the EER threshold
was about 0.65, the thresholds with the CTC detectors were
in range of 0.1–0.3. This is discussed later in Section 4.1.

Table 1 shows obtained EERs of the DNN and CTC nasal
detectors. The CTC detectors with classic RNN and more
complex LSTM achieved worse performance than the DNN
detector, whereas the CTC detector with GRU outperforms
the baseline.

Table 1. Equal Error Rates (EERs) of the baseline and the
proposed detection systems trained on the same training data
(100 hours).

System EER (%) Average CTC loss
Baseline (DNN) 4.7 –
CNN+RNN+CTC 10.2 23.307
CNN+LSTM+CTC 7.5 0.028
CNN+GRU+CTC 4.4 0.035

In many tasks both (GRU/LSTM) architectures yield
comparable performance2. GRUs have fewer parameters and
thus may train a bit faster or need less data to generalize.
On the other hand, more data might yield greater expressive
power of LSTMs, which can lead to better results.

Thus, we performed the second set of experiments with
joined sets train-clean-100 and train-clean-360.
Table 2 shows obtained EERs for the same three CTC de-
tector variants. Comparing to the results shown in Table 1,
the LSTM+CTC system indeed yields better with more data,
whereas the performance of the GRU+CTC system was satu-
rated. Increasing the training data about 4-5 times resulted in
decreasing the average CTC loss in about the same order.

2http://www.wildml.com/2015/10/

5576



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

Po
st

er
io

r p
ro

ba
bi

lit
y 

of
 n

as
al

s

Speech 10-ms shifted frames

DNN
CNN+LSTM

Fig. 2. A comparison of DNN and CNN+LSTM+CTC nasal detectors for the sentence “THIS LIBRIVOX RECORDING IS IN
A PUBLIC DOMAIN”. To train a frame aligned CNN+LSTM+CTC system, a stride of value 1 for time dimension was used in
the first CNN layer. Both detectors correctly detect 4 nasal occurrences. The CTC detector is more spiky and less noisy (the
output contains less false alarms).

Table 2. Equal Error Rates (EERs) of the the proposed detec-
tion systems trained on bigger data (460 hours).

System EER (%) Average CTC loss
CNN+RNN+CTC 4.8 6.335
CNN+GRU+CTC 4.5 0.008
CNN+LSTM+CTC 4.1 0.004

4.1. Discussion

The CNN in the used model performed 2D convolution,
where the first dimension is frequency and the second dimen-
sion is time. A longer stride is usually applied to speed-up
training. Using the stride in the time dimension results into
time compacting of the input audio, e.g., using the stride of 2
results into 2 times less frames of the output. For applications
where time alignment is required, we experimented with the
stride of 1. The training takes twice longer as with the stride
2, but for this phone-attribute task the training still converges
well.

Figure 2 shows an example of the DNN and LSTM, us-
ing stride 1 in the time domain, nasal detectors for a sample
librivox recording. Firstly, the CTC output is peaky, which
suggests that the CTC method can better deal with nasality
characteristics due to coarticularion and better separate them
from nasality associated to the features of the phoneme, than
the DNN based method. The peaks slightly change the po-
sition with individual training epochs. Secondly, the CTC
output contains less false positives that propagates in over-
all better performance, comparing to the DNN detector, in the
terms of EERs. We speculate that these CTC nasal detector
properties cause the lower detection thresholds observed dur-

ing EER evaluation.
On the other hand, there are also some disadvantages

of the proposed solution. The CTC detector does not allow
straightforward application in phonological vocoding [4].
The synthesis part of the phonological vocoder converts the
posterior phone attribute probabilities back to the speech
samples. The peaky nature of the CTC detector breaks frame
alignment of the detected phone attributes and the speech
frames. One solution would be to use duration of the phone
attributes at the input as well.

5. CONCLUSION

This paper has proposed to use the connectionist temporal
classification for the end-to-end phone attribute modeling.
The proposed system with GRUs outperformed the DNN
detector trained on the same 100 hours of speech data. By
increasing the training data to about 460 hours, the detector
with the LSTM units, which has more parameters, outper-
formed the GRU detector. Comparing to the DNN detector,
the CTC output is more peaky and has less false alarms.

Experiments were performed for the nasal phone attribute,
focusing on selection of right architecture and evaluation. Ex-
periments on different phone attributes is left to future work.
Application of the proposed nasals detector for a phenomenon
such as hypernasality, where too much air escapes through
the nose while talking for example of the children with cleft
palate or cerebral palsy, is also planned for future work.

The proposed system is implemented as a Python pack-
age based on PyTorch (http://pytorch.org). The
nasal CTC detector with pre-trained models is released as the
open-source code at https://doi.org/10.24433/
CO.44c5e908-1780-46cd-a950-1a2ad6ab4168.
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