
STATISTICAL PHRASE/ACCENT COMMAND ESTIMATION ALGORITHM
UTILIZING LINGUISTIC INFORMATION

Ryotaro Sato1, Kunio Kashino1,2

1 Graduate School of Information Science and Technology, The University of Tokyo
2NTT Communication Science Laboratories, NTT Corporation

ABSTRACT
The importance of extracting non-linguistic information has
been highlighted in a growing variety of applications of
speech signal processing. Among the audio features carry-
ing such information, fundamental frequency (F0) contours
are considered primarily important. The Fujisaki model is
a physical model that describes a F0 contour with only a
small number of parameters, namely, the timings and mag-
nitudes of the phrase and accent commands, and a stochastic
formulation and estimation algorithm have recently been pro-
posed for it. However, the use of linguistic information has
so far been limited, while it is known that accent commands
are strongly related to linguistic information in many lan-
guages, and linguistic information could be obtained from
the input audio signals by using speech recognition tech-
niques. Against this background, this paper introduces a
novel F0 command parameter estimation method that incor-
porates linguistic information with the stochastic framework.
Experiments using real speech data show that when linguistic
information is appropriately utilized, the estimation accuracy
of accent command parameters is improved by 43% under
the proposed criteria.

Index Terms— voice fundamental frequency contour es-
timation, Fujisaki model, prosodic information processing,
EM algorithm, speech recognition

1. INTRODUCTION

With the recent flourishing applications of speech signal
processing technologies, the extraction and analysis of non-
linguistic information have become more and more impor-
tant [1]. Voice fundamental frequency (F0) contours are
physical entities reflecting such non-linguistic information
as a speaker’s identity, attitude, intention, and mood. An
F0 contour is typically represented by the sum of two com-
ponents: a long-term varying component corresponding to a
whole phrase, and a component that exhibits rapid changes
according to the syllable units. The Fujisaki model [2] as-
sumes that these two kinds of component are the output
from a linear system. The input, called a “command”, is an
impulse-like signal for the long-varying component and a
step-like signal for the rapidly changing one. In other words,
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Fig. 1. Concept of Fujisaki model.

the Fujisaki model assumes that F0 contours are reproduced
by a series of command parameters, that is, the timings and
values of the commands. Representing complex F0 contours
with such a highly compressed compact set of parameters
is important not only for various applications such as mood
recognition from speech and natural conversation systems,
but also for scientific studies of prosody itself. Hence, it is
worth establishing the technique to extract these parameters
from speech signals with high accuracy.

Command parameter estimation for the Fujisaki model
has been a long-standing research topic [3] because it is basi-
cally an ill-posed inverse problem. To meet this challenge,
a generative model-based approach has recently been pro-
posed [4]. From the viewpoint of this approach, integrating
multiple pieces of information is expected to be useful to im-
prove its estimation accuracy [5]. Since linguistic information
is known to be tightly bound to accent information in many
tone languages and pitch-accent languages, here we consider
the use of linguistic information.

In the following sections, we first briefly review the
framework. We then propose a new method for the Fujisaki
model command parameter estimation by taking advantage
of linguistic information contained in speech signals. In Sec-
tion 4, we show that this model yields an improvement in
estimation accuracy. A conclusion is presented in Section 5.

2. GENERATIVE MODEL BASED APPROACH TO
F0 PARAMETER ESTIMATION

2.1. Fujisaki model, describing the F0 contour
The Fujisaki model [2] assumes that a speech F0 pattern on a
logarithmic frequency scale y(t) is given as the sum of three
components: y(t) = xp(t) + xa(t) + µb, where xp and xa
represent a phrase and accent component, and µb is a constant
offset value (Fig. 1). The phrase and accent components are
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Fig. 2. HMM generating Fujisaki model command functions
and graph of typical output parameters.

both assumed to be output from potentially different second-
order critically damped filters, Gp(t) and Ga(t), which are
excited with a pulse sequence up(t) (phrase commands) and
a rectangular pulse sequence ua(t) (accent commands), re-
spectively.

This model can be viewed as a compression ofF0 contours
to command functions sparsely valued in time. Therefore,
they are expected to be useful when analyzing the relationship
between prosody and individuality or emotion, for example.

The Fujisaki model is applicable to a wide range of lan-
guages. In a considerable number of tone languages and
pitch-accent languages, linguistic information is known to
be tightly bound to accent information and also to command
functions. For example, in the case of Japanese, accents are
considered to synchronously rise with linguistic accents.

2.2. Generative model of F0 command parameters

Over the years, many researchers have proposed methods to
automatically extract command parameters of the Fujisaki
model [6]. Our method is based on the generative model
approach introduced by Kameoka et al. [4].

This method introduces a path-restricted hidden Markov
model (HMM) that outputs the Fujisaki model command pa-
rameters (Fig. 2). We denote the state transition sequence at
each frame k by s = (s1, . . . , sk, . . . , sK). The output con-
sists of two-dimensional real values o[k] = (up[k], ua[k])

>,
representing the phrase/accent command amplitude at frame
k. Output values are independently normally distributed,
and the mean and variance of each component at each
state are model parameters. The state p0 means that only
the phrase command is activated ( µp[k] := E[up[k]] =
C(p)[k], µa[k] := E[ua[k]] = 0 ). Similarly, at the states
an(n = 0, · · · , N − 1) , only the accent command is acti-
vated (µp[k] = 0, µa[k] = C

(a)
n ), and both are deactivated

(µp[k] = µa[k] = 0) at the states ri(i = 0, 1). The path con-
straint restricts the sequence of µp to one consisting of iso-
lated deltas and µa[k] of rectangular pulses, which are impor-
tant features of commands functions. In summary, given a se-
quence s, this HMM emits O = (o[1], . . . ,o[K]) according
to the Gaussian distribution: O ∼

∏K
k=1N (o[k];ρ[k],Υ),

where ρ[k] = (µp[k], µa[k])
> and Υ = diag(σ2

p, σ
2
a). In

addition, we introduce the conditional density P (y|O, µb)
for log F0 values y = (y[1], . . . , y[K]) using the Gaussian
distribution.

Fig. 3. Graphical representation of the generative model for
F0 command parameters. Here, the only visible parameter
is y. The dashed arrow from the variable z means that this
variable exists only in the proposed method, not in the con-
ventional ones.

2.3. Conventional estimation algorithm
By using the stochastic command parameter model, the joint
probability density function can be written asP (s, θ, µb,O,y)
= P (y|O, µb)P (O|s, θ)P (s)P (µb)P (θ), where θ = {
{C(p)[k]}Kk=1, {C

(a)
n }N−1n=0 , σ

2
p, σ

2
a} contains all parameters

defining the output distributions. The graphical model sum-
marizes the dependency between these variables (Fig. 3).

The conventional inference method [4] uses the EM algo-
rithm by treating s as a latent variable to be marginalized out
and θ and µb as model parameters to be estimated:

• E step: Update P (sk = q|θ,O) for each frame k and
each state q using the Forward-Backward algorithm.

• M step: UpdateO, θ, µb using the auxiliary function.

After convergence, MAP estimation for s is performed using
the Viterbi algorithm to obtain the final result. We can sub-
stitute a point estimation with the Viterbi algorithm for each
E step in this algorithm (known as the hard EM algorithm) to
accelerate the estimation without loss of accuracy [5].

To improve the inference accuracy, the spectral feature v
was incorporated into the HMM in previous research [5]. In
this model, the function P (v|s)P (O|s)P (s) is maximized
instead of P (O|s)P (s). This method is designed to detect
mora transitions in Japanese speech signals and to restrain
the rise of accent commands near mora transition points, but
it does not fully utilize linguistic information.

3. PROPOSED METHOD

To further improve the accuracy of estimating F0 parameters,
we propose a new method incorporating linguistic informa-
tion in the conventional model.

Here, we focus on Japanese as an example of pitch-accent
languages. A Japanese utterance is commonly understood as
a series of multiple accentual phrases. For each accentual
phrase, at most one mora called the accent nucleus is defined.
The accent nucleus in the accentual phrase determines how
the accent appears. In more detail, if the first mora in the
accentual phrase is the accent nucleus, only the first mora is
spoken with a high accent, and it is followed by a low ac-
cent utterance for remaining morae in this phrase. Otherwise,
only the utterance between the second mora and and the one
defined as the accent nucleus is with a high accent. From the
perspective of the Fujisaki model, the accent in each accentual
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Fig. 4. Block diagram of proposed system.

phrase can be considered to correspond roughly to a single
accent command. Therefore, it is expected that the estima-
tion accuracy of the command parameters will be improved
by adding accent nucleus information as a clue to restrain the
timing of the rise or fall of accent commands.

In the literature, various methods utilizing linguistic in-
formation for command estimation have been proposed. A
major approach has been deciding initial values of command
parameters using linguistic information and iteratively updat-
ing them [7, 8]. An alternative approach is first estimating the
command parameters by only F0 information and then mod-
ifying them by predetermined procedures using linguistic in-
formation [9]. In [10], a method of constructing a statistical
model that predicts the command parameters from linguistic
information is discussed.

In contrast, here we consider taking advantages of the
powerful probabilistic framework for command parameter es-
timation, by extending the model [5] to incorporate linguisti-
cally inferred accent information into the estimation of hidden
state sequences. In this approach, both linguistic and prosodic
information are incorporated into a single probabilistic model
and treated in a unified way.

We introduce a new abstract vector variable representing
how “high” the accent is at each frame z = (z[1], . . . , z[K]).
z contains linguistic information about accents, and is in-
ferred to be the basic value to determine where F0 commands
occur. Therefore, we introduce probabilistic dependency
P (s | z) and run the estimation algorithm with this new
term. This new probability function can be learned using
large datasets. When incorporating the term into the EM
algorithm, only the E step needs to be modified. When
adapting the simplified hard E step, we maximize the func-
tion P (O | s)P (s)P (s | z) with respect to s, instead of
P (O | s)P (s).

In the case of Japanese, for a given speech script, accent
positions are linguistically determined in principle. In our re-
search, we assume that for a given speech signal, each frame
is decided to be pronounced with either a high or a low ac-
cent. We set each component z[k] to 1 if the k-th frame is
pronounced with a high accent and set it to 0 otherwise. As
a restriction between z and s, we introduce a simple assump-
tion: at frame k that z indicates the point at which the accent

is falling(z[k] = 1 and z[k + 1] = 0), the accent command
must also be falling. In addition, the onsets of the accent com-
mands are only allowed within the frames of (t− t0, t+ t1),
where t is the rising time indicated by z. The parameters t0
and t1 are predetermined to be t0 = 80, t1 = 40 [ms].

Compared with the previous method [5] expressing the
relationship between prosodic and linguistic information by
mediating spectral feature values, the proposed method di-
rectly utilizes linguistic information to bind prosodic param-
eters. From this point of view, this method is expected to
achieve further improvement in accuracy.

4. EXPERIMENTS

We built an end-to-end command parameter estimation sys-
tem to evaluate its accuracy on real speech data (Fig. 4).

For a given speech signal, This system first performs
speech recognition to acquire linguistic information. Here,
we used Julius [11]. Phoneme alignment was also performed.
Next, accentual phrases and the position of the accent kernel
for each accentual phrase were estimated using TASET [12],
and z was calculated. Then, we extracted F0 patterns y from
the speech signal by the method [13], and initialized O using
Narusawa’s method [6]. Finally, we iterated the EM algo-
rithm 20 times to get the estimated parameter values. We
also conducted another experiment using human-annotated
accent kernel information to evaluate the upper limit of the
performance of our model when linguistic analysis is ideal.

The speech data was excerpted from the ATR Japanese
sentence database B-set [14]. We used 503 sentences spoken
by one male speaker (MHT), of which the first 200 sentences
were used for learning. The baseline values µb were fixed to
the minimum value of F0 in the voiced segments.

Throughout the experiments, we used the values α =
3.0 rad/s, β = 20.0 rad/s, N = 10, σ2

p = σ2
a = 0.032,

and set the time shift per frame to 8 ms.
To measure the estimation accuracy, we used the deletion

and insertion rates of estimated commands. These are de-
fined as follows. First, we match the estimated and ground
truth command sequences on a command-by-command basis
with the dynamic programming algorithm. By using a pre-
defined time difference tolerance S, the estimated commands
that have a match are judged to be ”matched.” In the case of
accent commands, we compare the mean value of the onset
time difference and the offset time difference with S. Let N ,
Nest, and Nmatch be the number of commands in the ground
truth data, in the estimated result, and judged to be matched,
respectively. The deletion/insertion rates are then defined as
pdel = (N − Nmatch)/N and pins = (Nest − Nmatch)/N .
In addition, we call the value 2pdelpins/(pdel + pins)as ‘F-
measure’ for convenience.

We fixed S = 0.1 [sec], which is approximately a typical
duration of one mora in Japanese utterances. These criteria
do not concern the magnitudes of the commands because we
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Fig. 5. Comparison of deletion/insertion rates. From the
left, each column represents the method using only F0, the
conventional method using spectral feature values [5], and
the proposed methods, respectively. The proposed methods
were conducted under three conditions: fully automatic lin-
guistic analysis (Julius+TASET), annotated labels substitut-
ing speech recognition (TASET), and all hand-labeled lin-
guistic analysis (manually annotated).

Table 1. Average computation time per one sentence.
Process [s] Conventional Proposed
Speech recognition - 0.480
Accent kernel estimation - 0.514
EM algorithm (20 iterations) 2.411 4.216
Total estimation 2.411 5.210
Average duration of signal 5.279

are interested in the appropriateness of estimation in terms of
the number of correctly estimated commands.

Fig. 5 shows the insertion and deletion rates of command
functions estimated with the conventional and proposed meth-
ods. Incorporating automatically obtained linguistic informa-
tion by using Julius and TASET reduced the ‘F-measures’ by
19%. Using manually annotated ground-truth linguistic infor-
mation reduced the value by 43%. Although the assumptions
of the proposed model are very simple, this is a significant
improvement when compared to the value of 4% obtained by
the previous method [5] that incorporated spectral features to
detect mora transitions. This fact shows that use of linguistic
information is quite effective for improvement of the accuracy
of the conventional stochastic estimation method. It also sug-
gests that it is worth considering more complicated stochastic
models which describe the relationship between linguistic and
prosodic information for further improvement of the accuracy.

The computation times spent for the estimation are sum-
marized in Table 1. We conducted the experiment using a
desktop computer with Intel Core i7 6700K CPU (programs
are not parallelized) and NVIDIA Quadro K620 GPU (only
for DNN-based speech recognition). We compared the pro-
posed method with the conventional one [5] which uses only
F0 information. This table shows that the proposed method
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Fig. 6. Example of inferring results for one Japanese sentence
(J27:Goteni mawatte maketa keisatsuga funkisuru banda, It’s
the police’s turn to show their fighting spirit who once fell
behind and lost). The top row shows the F0 contours. The
following rows show the ground-truth and inferred command
parameters, by the method using only F0 and the method ex-
ecuting the linguistic process automatically. The solid lines
and dotted lines represent phrase and accent commands, re-
spectively. The next row shows the estimated accent included
in TASET output. The bottom row shows the mora segmen-
tation data.

works fast enough for real-time operation even when consid-
ering the contribution of linguistic information processing.

Fig. 6 shows an example of the estimated results. It can
be seen that the proposed method outputs more reasonable
command parameters, and that the false accent command es-
timations of the conventional method are rectified.

5. CONCLUSION

We described a novel method to estimate F0 command pa-
rameters. Compared to the existing probabilistic models for
this task, the advantage of the proposed method is its use of
linguistic information obtained from the input speech. We
showed that it significantly reduced the command estimation
errors. While we focused on Japanese language in this paper,
our method is expected to be effective also on other languages
as long as linguistic information and prosody are correlated
to each other. Future work will include constructing proba-
bilistic models reflecting the relationships between linguistic
information and F0 commands more precisely. Integrating
some other sources of information that may further improve
the command estimation accuracy is also an important task.
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