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ABSTRACT

In this paper, we present an algorithm called Reliable Mask Selection-

Phase Difference Channel Weighting (RMS-PDCW) which selects

the target source masked by a noise source using the Angle of Arrival

(AoA) information calculated using the phase difference informa-

tion. The RMS-PDCW algorithm selects masks to apply using the

information about the localized sound source and the onset detec-

tion of speech. We demonstrate that this algorithm shows relatively

5.3 percent improvement over the baseline acoustic model, which

was multistyle-trained using 22 million utterances on the simulated

test set consisting of real-world and interfering-speaker noise with

reverberation time distribution between 0 ms and 900 ms and SNR

distribution between 0 dB up to clean.

Index Terms— Far-field Speech Recognition, Sound source

separation, phase difference, Time-frequency bin masking

1. INTRODUCTION

After the advancement of deep learning technology [1, 2, 3, 4, 5,

6], speech recognition accuracy has improved dramatically. Now,

speech recognition systems are used not only in portable devices but

also in standalone devices for far-field speech recognition. Examples

include voice assistant systems such as Amazon Alexa and Google

Home [7, 8]. In far-field speech recognition, the impact of noise

and reverberation is much larger than near-field cases. Traditional

approaches to far-field speech recognition include noise robust fea-

ture extraction algorithms [9, 10], on-set enhancement algorithms

[11, 12]. Recently, we observed that training using noisy data gen-

erated using “room simulator” [7] improves speech recognition ac-

curacy dramatically This system has been successfully employed for

training acoustic models for Google Home or Google voice search.

However, as will be seen in Sec. 3, for highly non-stationary

noise like interfering speaker noise, this Multistyle TRaining (MTR)

or data augmentation approach is not sufficient. In this case, various

multi-microphone processing may be employed to further enhance

robustness [13, 14, 15, 16, 17]. It has been known that the Inter-

microphone Time Delay (ITD) or Phase Difference (PD) between

two microphones may be used to identify the Angle of Arrival (AoA)

[18, 19]. The Inter-microphone Intensity Difference (IID) may also

serve as a cue for determining the AoA [20, 21].

Using the ITD information, we proposed approaches such as

Phase Difference Channel Weighting [18] or PAINT. Even though

these approaches show good improvement for interfering speakers,

it turns out that they may show degradation when the noise type is

not highly stationary and reverberation is rather strong. This hap-

pens when the estimated mask information is not reliable enough. To
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Fig. 1: Two microphones and the target sound source. The space

inside a room is divided into three regions depending on the

azimuth angle θ: Θ+, Θo, and Θ−. We use θ0 of 15o.

tackle this problem, we developed an algorithm referred to as Reli-

able Masking Selection Phase Difference Channel Weighting (RMS-

PDCW). In RMS-PDCW approach, we apply mask only when the

mask is estimated more reliably. To test mask reliabiltiy, we use the

two criteria: source concentration criterion and the onset criterion.

2. THE STRUCTURE OF THE RELIABLE MASK

SELECTION PHASE DIFFERENCE CHANNEL

WEIGHTING (RMS-PDCW) ALGORITHM

2.1. Review on estimation of the Angle of Arrival (AoA) from

phase difference

In this section, we review the procedure for estimating the Angle

of Arrival (AoA) of a sound source using two microphone signals

[18, 22]. Suppose that we have a pair of microphones and a sound

source in Fig. 1. The sound source is located in the direction of the

azimuth angle θ.

Let us define the phase difference Δφ[m,ωk] for each time-

frequency bin [m,ωk] [18]:

Δφ[m,ωk] �Arg
(
X1[m, ejωk ]

)
− Arg

(
X0[m, ejωk ]

)
mod [−π, π), 0 ≤ k ≤

K

2
, (1)

where m is the frame index and ωk is the discrete frequency index

defined by ωk = 2πk
K

, 0 ≤ k ≤ K/2 where K is the DFT size.

X0[m, ejωk ] and X1[m, ejωk ] are Short-Time Fourier Transform

(STFT) of the signals from each microphone. We use a Hamming

window of length 100 ms.
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Fig. 2: A block diagram showing the structure of the Reliable Mask

Selection - Phase Difference Channel Weighting (RMS-PDCW)

algorithm.

From geometric consideration, the AoA θ[m,ωk] is estimated

using the following equation [22]:

θ[m,ωk] = arcsin

(
cairΔφ[m,ωk]

fsωkd

)
, 0 ≤ k ≤

K

2
, (2)

where fs is the sampling rate of the signal, and cair is the speed of

sound in air, d is the distance between two microphones. In obtaining

results in Sec. 3, we use fs = 16, 000 Hz, cair = 343 m/s, and

d = 0.04 m.

2.2. Reliable Binary Mask Selection

In this section, we describe the Reliable Binary Mask Selection

(RBMS) approach used in the RMS-PDCW algorithm. In the orig-

inal PDCW [18], we obtain binary mask by examining whether the

estimated AoA corresponds to the region Θo in Fig. 1.

μ[m, k] =

{
1 : if

∣∣θ[m,ωk]
∣∣ < θ0.

0 : if
∣∣θ[m,ωk]

∣∣ > θ0.
(3)

In our experiments in Sec. 3, we use θ0 value of 15o. Under re-

verberation, the estimated AoA θ[m,ωk] in (2) will have an error,

which degrades the reliability of the estimated mask μ[m, k] in (3).

When mask estimation is inaccurate, masking may degrade signals

rather than enhance them. To test the reliability of masking, we first

test whether a target or noisy sound source is likely to be present in

a speech frame. We divide the discrete frequency range 0 ≤ k ≤ K
2

into three subsets corresponding to spatial regions Θ+, Θo, and Θ−

in Fig. 1 depending on the Angle of Arrival (AoA) θ[m,ωk] in (2).

K+[m] = {k
∣∣θ[m,ωk] ∈ Θ+ 0 ≤ k ≤ K/2}, (4a)

Ko[m] = {k
∣∣θ[m,ωk] ∈ Θo, 0 ≤ k ≤ K/2}, (4b)

K−[m] = {k
∣∣θ[m,ωk] ∈ Θ−, 0 ≤ k ≤ K/2}. (4c)

In RBMS , we apply binary mask only when a localized source

is identified within each of the spatial regions Θ+, Θo, and Θ− at

a specific frame m. For this decision, we calculate the mean and

the standard deviation of the estimated AoA θ[m,ωk] for each of

these spatial regions. For calculation, we use the magnitude squared

spectrum as weighting. For Θo, the mean μo
θ[m] and the standard

deviation σo[m] are calculated using the following equations:

μo
θ[m] =

∑
k∈Ko[m] p[m, k]θ[m,ωk]∑

k∈Ko[m] p[m, k]
, (5a)

σo
θ [m] =

√∑
k∈Ko[m] p[m, k]θ[m,ωk]2∑

k∈Ko[m] p[m, k]
− (μo

θ[m])2. (5b)

where p[m,ωk] is the magnitude squared spectrum defined by:

p[m,ωk] = |(X1[m,ωk] +X2[m,ωk]) /2|
2 . (6)(

μ+
θ [m], σ+

θ [m]
)

and
(
μ−
θ [m], σ−

θ [m]
)

are calculated using the

same equation just by replacing Ko with an appropriate subset

in (4). For target source presence test, we use the following two

criteria:

σo
θ [m] < σT , (7a)

−θ0 + σo
θ [m] < μθ[m] < θ0 − σo

θ [m]. (7b)

σT is a constant and we use a value of 10o. This test checks whether

the power distribution is sufficiently concentrated in (7a), and checks

whether the mean μθ[m] is separated from the AoA threshold θ0 by

more than the standard deviation σo
θ [m] in (7b). If the target source

presence test in (2.2) fails, we assume that mask calculation in (3)

is unreliable, and use μ[m, k] = 1 for the entire 0 ≤ k ≤ K/2
regardless of the following two noise source presence tests in (8) and

(9). To test the noise source presence in Θ−, we use the following

two criteria:

σ−
θ [m] < σN , (8a)

μ−
θ [m] < −θ0 − σ−

θ [m]. (8b)

The intention of this test for Θ− is is the same as the target source

presence test. σN is a constant and we use a value of 20o. If

the test in (8) fails, then μ[m, k] = 1 for k ∈ K−[m], otherwise

μ[m, k] = 0 for k ∈ K−[m]. The noise source presence test for Θ+

is performed in the same way as the above noise source presence test

for Θ−:

σ+
θ [m] < σN , (9a)

μ+
θ [m] > θ0 + σ+

θ [m]. (9b)

If the test in (9) fails, then μ[m, k] = 1 for k ∈ K+[m], otherwise

μ[m, k] = 0 for k ∈ K+[m]. In sum, by using tests in , (8), and (9),

we mask time-frequency bins corresponding to spatial region Θ+

and Θ− when both the target and noise sources are likely to exist.

2.3. Reliable Channel Mask Selection (RCMS)

In this section, we describe Reliable Channel Mask Selection

(RCMS). Channel masking is accomplished using the Channel

Weighting (CW) approach described in [23, 22]. To select more re-

liable channel masks, we develop a simple onset detection algorithm

based on [11]. This is motivated by the fact that the onset portion of

speech is less affected by reverberation [24]. In our previous work
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[23, 22], we observed that the applying ratio masks for each channel

gives better result than applying the binary masks μ[m, k] in (3) for

each DFT index.

Let us first review the Channel Weighting [23]. The filter bank

energy of the l-th channel at the frame index m is given by the fol-

lowing equation:

P [m, l] =

K/2∑
k=0

∣∣∣Xa[m, ejωk ]Hl[e
ωk ]

∣∣∣2 (10)

where Xa[m, ejωk ] is the average spectrum given by Xa[m, ejωk ] =(
X1[m, ejωk ] +X2[m, ejωk ]

)
/2. After applying the binary mask

μ[m, k] in (3), the filter bank energy for the same l-th channel is

given by:

Pμ[m, l] =

K/2∑
k=0

μ[m, k]
∣∣∣Xa[m, ejωk ]Hl[e

ωk ]
∣∣∣2 (11)

The channel mask coefficient w[m, l] is the square root of the ratio

of Pμ[m, l] in (11) to P [m, l] in (10):

w[m, l] =

√
Pμ[m, l]

P [m, l]
. (12)

Onset detection algorithm we use is motivated by our onset enhance-

ment algorithm in [11]. From the filter bank energy P [m, l] in (10),

the low-passed signal is given by:

M [m, l] = λM [m− 1, l] + (1− λ)P [m, l] (13)

In our implementation, we use the forgetting factor λ = 0.01 when

the period between successive frames is 50 ms. The onset detection

is based on the following decision criterion:

μ[m, k] =

{
Onset : if P [m, l] > M [m, l],

Non-Onset : if P [m, l] ≤ M [m, l].
(14)

For non-onset portion, we do not update the channel mask coeffi-

cient:

wonset[m, l] =

{√
Pμ[m,l]

P [m,l]
. if P [m, l] > M [m, l],

wonset[m− 1, l] if P [m, l] ≤ M [m, l].
(15)

The enhanced spectrum is given by the following equation:

Y [m,ωk] =

L−1∑
l=0

wonset[m, l]Xa[m,ωk]Hl[ωk] (16)

The output time-domain waveform is synthesized using the Inverse

Fast Fourier Transform (IFFT) and OverLap Addition (OLA).

2.4. Acoustic model training

Fig. 3 shows the structure of the acoustic model pipeline used for

training the speech recognition system in our experiments. The

pipeline is based on our work described in [8, 7] with some mod-

ification. The “room simulator” generates one-channel simulated

utterance by randomly picking up a room configuration. The room

configuration distribution , noise sources, SNR, and reverberation

time distribution are exactly the same as what we described in [7].

One major difference is instead of generating two-channel simulated

waveform, we generate one-channel waveform. After every epoch,

Simulated
Utterance
Generator

Complex FFT and
CLP layer

Single-channel Simulated Waveform

Single Channel
Original Waveform

Room
Simulator

DNN

LSTM

LSTM

LSTM

LSTM

LSTM

LDNN

Output Targets

Simulated
Utterance
Generator

Room Configuration
Specification

Fig. 3: The architecture for acoustic model training using the room

simulator and LSTMs and a DNN (LDNN) [27, 7].

we apply a different room configuration to the utterance so that each

utterance may be regenerated in somewhat different configuration.

As input, we use the 128 dimension log-mel feature whose window

size is 32 ms. The interval between successive frame is 10 ms.

The low and upper cutoff frequencies of the mel filterbank are 125

Hz and 7500 Hz respectively. Since it has been shown that long-

duration features represented by overlapping features are helpful

[25], four frames are stacked together and the input is downsampled

by a factor of 3. Thus we use a context dependent feature consisting

of 512 elements given by 128 (the size of the log-mel feature) x 4

(number of stacked frames). The feature is processed by a typical

multi-layer LSTM acoustic model. We use 5-layer LSTMs with 768

units in each layer. The output of the final LSTM layer is passed to a

768 unit DNN, followed by a softmax layer. The softmax layer has

8192 nodes corresponding to the number of tied context-dependent

phones in our ASR system. The output state label is delayed by

five frames, since it was observed that the information about future

frames improves the prediction of the current frame [26]. The acous-

tic model was trained using the Cross-Entropy (CE) minimization

as the objective function after aligning each utterance. The Word

Error Rates (WERs) are obtained after 120 million steps of acoustic

model training.

3. EXPERIMENTAL RESULTS

In this section, we show experimental results obtained with the

RMS-PDCW algorithm. For training, we used an anonymized 22-

million English utterances (18,000-hr), which are hand-transcribed.

The training set is the same as what we used in [8, 7]. For evaluation,

we used around 15-hour of utterances (13,795 utterances) obtained

from anonymized voice search data. We also generate noisy eval-

uation sets from this relatively clean voice search data. The “room

simulator” in [7]. was used to generate noisy utterances assuming

room configuration shown in Fig. 4. For noisy data, we use two

different . types of noise. The first one is the DEMAND [28] noise,

which contains various real-world noises from kitchens, rivers, hall-

ways, buses, metro, cars, etc [28]. The noise in the DEMAND noise

is relatively stationary. The second noise type we used is interfer-

ing speaker utterances which were obtained from the Wall Street

Journal (WSJ) si-284 corpus. In the noisy set in Table. 1, we used

5561



Table 1: Word Error Rates (WERs) obtained with

multi-microphone approaches with Multistyle TRaining (MTR) using the room simulator [7].

Clean Simulated noisy set
Relative improvement over

the baseline with MTR (%)

Baseline 11.3 % 51.7 % -

Baseline with MTR 11.7 % 35.1 % -

Delay and sum with MTR 11.7 % 34.9 % 0.6 %

PPDCW with MTR 11.8 % 34.4 % 3.2 %

PDCW + RCMS with MTR 11.8 % 33.6 % 4.2 %

PDCW + RBMS with MTR 11.8 % 33.3 % 5.0 %

RMS-PDCW with MTR 11.8 % 33.2 % 5.3 %
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Fig. 4: Room configuration used in the experiment in Sec. 3

50 percent of noise from the DEMAND noise set and 50 percent

from WSJ si-284 corpus. For reverberation time, we used a uniform

distribution from 0 seconds to 900 ms. For the SNR distribution, we

used 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and the clean utterance in

equal proportions.

Due to the page limitation, we cannot show results for each spe-

cific SNR level, noise type, and reverberation time. The relative

improvement is not uniform for different conditions. For example

as shown in Fig. 5a, PDCW and RMS-PDCW show very large im-

provement for interfering speaker noise at relatively small reverber-

ation time. For example at 0 dB SNR and T60 = 0 ms, PDCW and

RMS-PDCW show more than 80 % Word Error Rate (WER) reduc-

tion.

However, for strong stationary noise under high reverberation

time, the MTR is quite effective. In such cases, PDCW and RMS-

PDCW may show somewhat worse performance than the baseline

MTR as shown in Fig. 5b. As a whole, The baseline system without

MTR shows 51.7 % Word Error Rate (WER) as shown in Table 1.

The baseline with the MTR using the room simulator in [7] reduces

the WER down to 35.1 %. We observe that MTR is more effec-

tive for stationary noise rather than highly non-stationary noise such

as the interfering speaker noise. The PDCW system shows 34.4 %

WER, which is relatively 3.2 % WER reduction over the baseline

with MTR. RBMS and RCMS described in 2.2 and 2.3 bring addi-

tional improvement over the standard PDCW. RMS-PDCW which

includes both the RBMS and RCMS shows relatively 5.3 % WER

reduction as shown in Table 1.
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Fig. 5: Word Error Rates (WERs) for the voice search test set at

different reverberation time corrupted by (a) an interfering speaker

and (b) various noise in the DEMAND noise database.

4. CONCLUSIONS

In this paper, we described the RMS-PDCW algorithm which selects

more reliable masks and applies them to utterances corrupted by

noise and reverberation. Our experimental results show that the this

algorithm shows relatively 5.3 % WER reduction over the single-

channel baseline trained using the room simulator .
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