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ABSTRACT

This paper addresses the problem of single channel speech recogni-
tion of a target speaker in a mixture of speech signals. We propose
to exploit auxiliary speaker information provided by an adaptation
utterance from the target speaker to extract and recognize only that
speaker. Using such auxiliary information, we can build a speaker
extraction neural network (NN) that is independent of the number
of sources in the mixture, and that can track speakers across dif-
ferent utterances, which are two challenging issues occurring with
conventional approaches for speech recognition of mixtures. We
call such an informed speaker extraction scheme “SpeakerBeam”.
SpeakerBeam exploits a recently developed context adaptive deep
NN (CADNN) that allows tracking speech from a target speaker us-
ing a speaker adaptation layer, whose parameters are adjusted de-
pending on auxiliary features representing the target speaker charac-
teristics. SpeakerBeam was previously investigated for speaker ex-
traction using a microphone array. In this paper, we demonstrate that
it is also efficient for single channel speaker extraction. The speaker
adaptation layer can be employed either to build a speaker adaptive
acoustic model that recognizes only the target speaker or a mask-
based speaker extraction network that extracts the target speech from
the speech mixture signal prior to recognition. We also show that
the latter speaker extraction network can be optimized jointly with
an acoustic model to further improve ASR performance.

Index Terms— Speech Recognition, Speech mixtures, Speaker
extraction, Adaptation, Robust ASR

1. INTRODUCTION

With the deployment of speech driven home devices, there has been
an increased interest for noise robust automatic speech recognition
(ASR) [1, 2]. Recently, significant progress has been made exploit-
ing microphone arrays by combining traditional signal processing
approaches with deep learning [3–6]. In contrast, single channel ro-
bust speech recognition remains a challenging task [7], especially in
presence of interfering speakers.

There has been much research aiming at separating speech sig-
nals observed in a mixture using deep learning [8–10]. Initial at-
tempts proposed to train a DNN to output as many signals as there
is in the mixture. However, such approaches present several limi-
tations. First they are limited to mixture composed of signals with
distinct characteristics such as different genders [8]. Indeed, with-
out such constraints it is not possible to control which output cor-
responds to which speaker and therefore the models are difficult to
train. We call this problem theframe level permutation problem.
In addition, these approaches impose a hard constraint on the num-
ber of speakers it can handle as it is fixed by the architecture of the

network and thus these approaches can be hard to generalize to un-
known number of speakers.

Recently, deep clustering [9] and deep attractor networks [11]
have been proposed to release these limitations. They solve the
frame level permutation problem by learning a DNN that outputs
embeddings for time-frequency bins, such that time-frequency cor-
responding to a same speaker are close to each other in the embed-
ding space. Speech separation masks for each source can then be
computed by clustering the embedding vectors. Although the DNN
does not have a hard constraint on the number of speakers in the mix-
tures, the clustering step requires knowing or estimating the number
of speakers. Moreover, there remains apermutation problem across
utterances, as there is no guarantee that embedding vectors for a
given speaker will take similar values across different processing
segments.

Permutation invariant training [12] is another approach, which
mitigates theframe level permutation problem at the training stage,
by modifying the training objective function such that labels are
permuted to find the closest match with the output of the DNN.
The learned model can separate and track speakers within an ut-
terance [13], and generalize to unknown number of speakers [14].
Moreover, permutation invariant training can be easily used to jointly
optimize a speech separation and acoustic model [13,15]. However,
thepermutation problem across utterances remains unaddressed.

We have recently proposed an alternative approach for recog-
nizing speech in mixtures using a microphone array. Instead of
aiming at separating all signals and recognizing them, we focus
on building a speaker extraction DNN that extracts only a target
signal. We employ an adaptation utterance consisting of recordings
of the target speaker voice only, to inform the speaker extraction
DNN about which speaker to extract. We call such a scheme,
SpeakerBeam. In [16], we showed that a key to achieve high target
speaker extraction performance was to employ a context adaptive
DNN (CADNN) architecture proposed for speaker adaptation of
the acoustic model [17], which can adjust its parameters depending
on auxiliary features representing the target speaker characteris-
tics. Since SpeakerBeam only outputs a target speaker, it does not
assume any knowledge of the number of sources present in the mix-
ture. Moreover, as it can track the target speaker across utterances, it
can solve thepermutation problem globally. Note that being able to
track a target speaker across utterances has very practical implica-
tions. For example, it opens the possibility of building personalized
home devices that can focus on recognizing commands or speech
from a target speaker, e.g. the owner of the device.

In this paper, we explore the extraction capabilities of Speaker-
Beam in single channel case. We investigate three different con-
figurations, i.e. an adaptive acoustic model performing recognition
of the target speaker (SpeakerBeam-AM), a mask-based speakerex-
traction front-end (SpeakerBeam-FE), and a joint system combining
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mask-based speaker extraction and recognition (SpeakerBeam-JT).
The remainder of the paper is organized as follows. In Section 2

we introduce the problem and present the principles of single chan-
nel SpeakerBeam and its different implementations. Section 3 dis-
cusses relation with prior works. We then report experimental results
in Section 4 and conclude the paper in Section 5

2. SINGLE CHANNEL SPEAKERBEAM

Let us first introduce the problem and describe the different Speaker-
Beam configurations that we investigate in this paper.

2.1. Problem formulation

We model the observed mixture signal in the short-term Fourier
transform (STFT) domain,Y (t, f), as,

Y (t, f) = X
(s)(t, f) +N(t, f), (1)

whereX(s)(t, f) is the speech signal corresponding to the target
speakers, N(t, f) is the interference signal consisting of interfer-
ence speakers and background noise, (in the experiments we only
considered interfering speakers), andt andf are time and frequency
indexes, respectively. We denote byyt the feature vector containing
the log mel filterbank coefficients of signalY (t, f). We aim at rec-
ognizing only the target speechX(s)(t, f) out of the mixture signal.

2.2. SpeakerBeam front-end (SpeakerBeam-FE)

We treat the target speaker extraction task as a speaker adaptation
of a speech extraction DNN, which inputs speech features of the
observed mixture signal and outputs a time-frequency mask that ex-
tracts the target speaker out of the observed mixture. In [18], such
masks were used in a microphone array configuration to compute
beamformer coefficients. Here, we focus on the single microphone
configuration, where the time-frequency masks obtained from the
DNN are simply applied to the mixture to estimate the target speech
as,

X̂
(s)(t, f) = M

(s)(t, f)Y (t, f), (2)

whereX̂(s)(t, f) is an estimated target speech andM (s)(t, f) is a
time-frequency mask computed with the speaker extraction DNN.

Without any guidance, the speaker extraction neural network has
no way of knowing which signal in the mixture is the target. There-
fore, we use an adaption utterance to extract speaker characteristics
and guide the system. The adaptation utteranceA(s)(t, f) consists
of a speech signal containing only the target speaker and differs from
the target speech in the mixture.

We use a speaker adaptive layer described below as one of the
layers of a DNN to adapt the speech extraction DNN to the target
speaker.

2.2.1. Speaker adaptation layer

We have recently proposed a CADNN as an alternative approach for
auxiliary feature-based DNN adaptation [17, 19]. A CADNN is a
DNN, which has a speaker adaptation layer as shown in Figure 1,
which consists of a weighted sum of the contribution of sub-layers,

h
(o) = σ

(

M
∑

m=1

α
(s)
m Fm

(

h
(i)
)

)

, (3)

whereh(i) andh(o) are the input and output of the adaptation layer,
respectively,F (l)

m is a transformation of the layer input,α(s)
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Fig. 1. Schematic diagram of the speaker adaptation layer and the
sequence summary auxiliary network.

adaptation weight associated with the target speakers, m is the in-
dex of the sub-layer,M is the number of sub-layers, andσ(·) is
an activation function such a sigmoid or ReLU. Here we use affine

transformations andFm

(

h(i)
)

= Wmh(i) +bm, whereWm and

bm are weight matrices and bias vectors, respectively. The speaker
adaption layer can greatly modify the network behavior because it
performs adaptation of both the bias and the weight matrix, which is
needed to extract the target speaker.

2.2.2. Sequence summarization for adaption weight computation

The behavior of the adaptive layer is governed by the adaptation
weightsα(s)

m , which allow the network to adapt itself for extracting
specifically the target speaker. We derive these adaptation weights
directly from the adaptation utterance,A(s)(t, f), using the se-
quence summary scheme proposed in [18,20] as,

α
(s) =

1

TA

TA
∑

t=1

g(|A(s)(t, f)|), (4)

whereα(s) = [α
(s)
1 , . . . , α

(s)
M

] is a vector containing the adapta-
tion weights for speakers, TA is the length of the adaptation utter-
ance andg(·) is an auxiliary neural network that inputs the amplitude
spectrum of the adaptation utterance,|A(s)(t, f)|.

Note thatg(·) is trained jointly with the main network. Directly
computing the target speaker dependent weightsα

(s) from the adap-
tation utterance avoids using intermediate feature representations of
the speakers such as i-vectors, and thus provides a speaker represen-
tation that is optimal for the speaker extraction task [18].

2.3. SpeakerBeam with joint training (SpeakerBeam-JT)

SpeakerBeam-FE learns the speaker extraction DNN by minimizing
the cross entropy w.r.t ideal binary masks (IBMs) [18]. However,
this may not be optimal for recognition. For example, the obtained
masks may suppress important information for the recognizer, or ex-
cessively leak the interfering speakers. Solving such mismatch be-
tween a speech enhancement front-end and an ASR back-end has
been addressed by jointly training both modules [15,21,22].

Here, we apply a similar strategy as [22], i.e. we connect the
speech extraction DNN and an acoustic model with a deterministic
feature extraction module that converts the extracted speech spec-
trum to log-mel filterbank coefficients with context.

2.4. SpeakerBeam acoustic model (SpeakerBeam-AM)

In [15], it was shown that permutation invariant training could be
used to directly train an acoustic model to perform separation and
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recognition. These results suggest that an acoustic model well
adapted to a target speaker may focus on recognizing only the
speech signal from the target speaker and ignore the interferences.
An alternative to SpeakerBeam-JT is to simply adapt an acoustic
model using the target speaker characteristics.

We propose using a speaker adaptation layer as one of the lay-
ers of an acoustic model to make it speaker adaptive. We use the
speaker adaptation layer and sequence summary scheme described
in Sections 2.2.1 and 2.2.2. SpeakerBeam-AM is similar to our pre-
vious work on acoustic model adaptation with CADNN [19], with
the difference that the adaptation weights are derived using the se-
quence summary scheme instead of i-vectors.

3. RELATION TO PRIOR WORK

There have been many studies on adaptation of DNN-based acoustic
models exploiting auxiliary features [19, 20, 23, 24]. Conventional
approaches simply concatenate the auxiliary feature to the input of a
DNN (auxiliary input DNN) [20,23,24]. However, simply inputting
the speaker representation to the input of the network realizes only
bias adaptation of the input layer, which may be insufficient to guide
the network to extract the target speaker [16].

In [24], a related scheme was proposed to extract a speaker rep-
resentation from a wake-up keyword for home assistant. The speaker
representation was used for end-point detection and acoustic model
adaptation. However, they employed the last output of an LSTM
as speaker representation and use it as an auxiliary input feature to
a DNN-based acoustic model. In our preliminary experiments, we
observed superior performance using the simple averaging operation
of Eq. (4), which may in our case better capture the overall speaker
characteristics since the adaptation utterances are relatively long.

Joint training of a speech enhancement DNN and an acous-
tic model have been investigated for single and multi-channel
cases [15, 22, 25]. With SpeakerBeam, we also jointly train the
auxiliary network that computes speaker characteristics, aiming at
obtaining speaker representation optimal for the target speech recog-
nition. Note that, in parallel to this work, we have been investigating
joint training of SpeakerBeam for microphone arrays [26].

4. EXPERIMENTS

We tested the different SpeakerBeam configurations using mixtures
of two speakers. Figure 2 illustrates the SpeakerBeam configurations
we investigated, and details their network architectures.

4.1. Data

To evaluate the proposed method, we created single channel speech
mixtures using recordings from the Wall Street Journal (WSJ) cor-
pus [27]. We used 7138 utterances from 83 speakers for the training
set, 410 utterances from 10 speakers in the development set and 330
utterances from 10 speakers in the evaluation set. For each utterance,
we mixed an interference utterance from a different speaker within
the same set. The training set was mixed with signal-to-interference
ratio (SIR) of 0 dB on average. It is the same as that used in [26]. To
evaluate performance for various input SIR conditions, we created
5 development and evaluation sets varying only the SIR between 0
and 20 dBs. In this preliminary experiments, all recordings included
moderate reverberation (about 0.2 sec), but no background noise.

For each mixture, we randomly chose an adaptation utterance
from the target speaker (different than the utterance in the mixture).
The length of the adaptation utterance was about 10 sec on average.
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Fig. 2. Schematic diagram of the three different SpeakerBeam configura-
tions. The numbers in the parentheses indicate the number of nodes and the
number of sub-layers for the adaptation layer. The auxiliarynetworks con-
sisted of two FC layers with 50 nodes and ReLU activations andan output
FC layer with a linear activation followed by the averaging operation. We
used ReLU for all hidden layer activation functions.

4.2. Settings

4.2.1. Baseline acoustic model

The baseline acoustic model consisted of 5 fully connected hidden
layers with 2048 nodes and ReLU activations functions. The output
layer had 2024 nodes corresponding to the HMM states. This model
was trained on single speaker recordings with alignments obtained
from a GMM-HMM system. The input of the acoustic model con-
sists of 40 log mel filterbank coefficients with a context extension
window of 11 frames. The features were mean normalized per utter-
ance. The AM and all other models were trained using the ADAM
optimizer [28]. As a comparison, we also tested the auxiliary input
feature based adaptation (auxiliary input AM) using speaker char-
acteristics obtained by processing the adaptation utterance with the
sequence summary scheme of Section 2.2.2.

4.2.2. SpeakerBeam-AM

SpeakerBeam-AM used a network architecture similar to the base-
line acoustic model, but with its second layer replaced with an
adaptation layer as shown in Fig. 2-(a). The input of the network
consisted of the speech features of the mixture signals. The input
of the auxiliary network consisted of the 401 dimension amplitude
spectrum coefficients of the adaption utterance. The weights of the
SpeakerBeam-AM were initialized with those of the baseline AM
as it improved performances slightly compared to starting from a
randomly initialized model.

4.2.3. SpeakerBeam-FE

The configuration of SpeakerBeam-FE is shown in Fig. 2-(b). The
input of SpeakerBeam-FE consisted of 401 dimension amplitude
spectrum computed using a STFT with a window size of 25 msec
and a 10 msec shift. The speaker extraction DNN was trained to
minimize the cross entropy w.r.t IBMs. In the SpeakerBeam-FE
recognition experiments, we retrained the baseline acoustic model
on the training mixture signals processed with SpeakerBeam-FE.
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Table 1. WER as a function of the input SIRs for the eval set. WER
a single speaker recognized with the baseline AM was 4.1 %.

0dB 5dB 10dB 15dB 20dB
Mixture w/ baseline AM 95.7 70.4 40.3 14.0 5.9
Auxiliary input AM 85.2 72.6 66.5 70.5 76.8
SpeakerBeam-AM 45.8 28.3 20.3 18.1 17.3
SpeakerBeam-FE 54.5 39.7 32.8 30.0 29.2
SpeakerBeam-JT 34.0 17.5 9.8 7.5 6.5

4.2.4. SpeakerBeam-JT

The configuration of SpeakerBeam-JT is shown in Fig. 2-(c). Ex-
cept otherwise mentioned, the parameters of SpeakerBeam-JT were
initialized with pre-trained modules, i.e. the mask estimation net-
work of SpeakerBeam-FE and the baseline acoustic model trained
on single speaker speech.

4.3. Results

Table 1 shows the word error rate (WER) for the eval sets as a func-
tion of the input SIRs. We used the development set to choose the
best decoding configuration (language model weight). We omitted
the results on the dev set because they exhibited similar tendency.

The baseline results were obtained by recognizing the single
speaker speech and the mixture with the baseline AM trained on sin-
gle speaker speech. Not surprisingly, recognizing the mixture signal
is very challenging especially for low input SIRs. In addition, using
the target speaker representation at the input of the acoustic model
(Auxiliary input AM) fails to improve performance on this task. This
indicates that the simple bias adaptation is insufficient to track the
target speaker.

The following three rows of Table 1 show the WERs of the
different SpeakerBeam configurations. Both SpeakerBeam-AM
and SpeakerBeam-FE greatly reduce WER compared to the mix-
ture results. Moreover, SpeakerBeam-JT can further greatly im-
prove performance at higher input SIRs. Comparing the results
of SpeakerBeam-AM with those of the AM with auxiliary input
features confirms that the speaker adaptation layer is essential for
speaker extraction. It is noticeable that even if SpeakerBeam-AM is
a relatively simple model that does not use any BLSTM, it already
significantly improves performance over the baseline and outper-
forms SpeakerBeam-FE. Investigation of SpeakerBeam-AM with
more powerful architectures will be a part of our future works.

Performance of both SpeakerBeam-AM and SpeakerBeam-FE
stopped improving significantly for input SIR above 10dBs. This
may be due to a mismatch between the training and testing condi-
tions, because the training data mostly cover input SIR around 0
dB. For SpeakerBeam-FE, the training criterion mismatch (IBM vs
ASR criterion) also appears to contribute to the poor performance at
higher input SIR, and SpeakerBeam-JT mitigates this issue.

For SpeakerBeam-JT, we used pre-trained modules to initialize
the model parameters. Such a pre-training improves performance,
however, we could still observe reasonable performance even when
all modules were randomly initialized, e.g. WERs of 35.1 % for
input SIRs of 0 dB.

4.4. Discussions

To better appreciate the difference between SpeakerBeam-FE and
SpeakerBeam-JT we compare recognition results and spectrograms
of the extracted speech signals for one utterance of the eval set at
input SIR of 0 dB. Using SpeakerBeam-FE the recognized sentence

(a) Target speech (b) Mixture

(c) SpeakerBeam-FE (d) SpeakerBeam-JT

Fig. 3. Spectrograms corresponding to utterance “440c0202” of the
eval set at input SIR of 0 dB.

includes several recognition errors shown in the underline text:
“The company has five hundred Japanese managers
overseas most of *** *** *** the positionexpects the
number to rise sixty percent in the next five years”.

With SpeakerBeam-JT the utterance was correctly recognized as:
“The company has five hundred Japanese managers
overseas most of them in key positions andexpects the
number to rise sixty percent in the next five years”.

Figure 3 plots the spectrograms of the single target speech,
the mixture and the extracted speech with SpeakerBeam-FE and
SpeakerBeam-JT for the portion of the utterance around the un-
derlined text. As shown in Fig.3-(c), SpeakerBeam-FE can reduce
the interference signal and outputs a relatively smooth spectrum.
However, some parts of the interference signals are still present as
shown in the areas marked with red rectangles. In contrast, the spec-
trogram obtained with SpeakerBeam-JT is less smooth, but reduces
further the interfering speaker. This appears to be better in terms of
recognition performance.

5. CONCLUSION

In this paper we have investigated three SpeakerBeam configurations
for target speaker extraction and recognition using a single micro-
phone. These schemes exploit a speaker adaptation layer, which en-
ables great control of the model parameters depending on the target
speaker characteristics and therefore allows tracking only a target
speaker in a mixture. We showed that a speaker adaptive acoustic
model could address the problem to some extent, but that best per-
formance was obtained when jointly training SpeakerBeam-FE with
an acoustic model.

Although SpeakerBeam does not make explicit use of the num-
ber of speakers in the mixture, in this preliminary study, we have
focused our experiments on mixture of two speakers. Future works
will include investigations with various conditions in terms of the
number of speakers in the mixture and in presence of background
noise as well as extended training data. Moreover, we will also in-
vestigate further improvements by combining SpeakerBeam-FE and
SpeakerBeam-AM so that both modules become speaker adaptive.
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