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ABSTRACT
Voice activity detection (VAD) is the task of predicting which parts
of an utterance contains speech versus background noise. It is an
important first step to determine which samples to send to the de-
coder and when to close the microphone. The long short-term mem-
ory neural network (LSTM) is a popular architecture for sequential
modeling of acoustic signals, and has been successfully used in sev-
eral VAD applications. However, it has been observed that LSTMs
suffer from state saturation problems when the utterance is long (i.e.,
for voice dictation tasks), and thus requires the LSTM state to be pe-
riodically reset. In this paper, we propose an alternative architecture
that does not suffer from saturation problems by modeling tempo-
ral variations through a stateless dilated convolution neural network
(CNN). The proposed architecture differs from conventional CNNs
in three respects: it uses dilated causal convolution, gated activa-
tions and residual connections. Results on a Google Voice Typing
task shows that the proposed architecture achieves 14% relative FA
improvement at a FR of 1% over state-of-the-art LSTMs for VAD
task. We also include detailed experiments investigating the factors
that distinguish the proposed architecture from conventional convo-
lution.

Index Terms— CNN, voice activity detection, LSTM

1. INTRODUCTION

In many automatic speech recognition (ASR) applications the VAD
is an essential component that identifies speech and filters out back-
ground noise. Such a task is often an important pre-processing stage
of an ASR system to determine when to close the microphone. In
short the VAD reduces computation and latency and also guides the
user interface.

A typical VAD system uses a frame-level classifier with acous-
tic features to make speech/non-speech decisions for each audio
frame (every 10ms) [1]. In a typical ASR system, the VAD needs
to work accurately in challenging environments, including noisy
conditions, reverberated environments and environments with back-
ground speech. Poor VAD could either accept background noise,
which makes recognition slow and expensive, or reject speech which
increases deletion errors (a few milliseconds of missed audio could
remove an entire word).

Significant research has been devoted to finding the optimal
VAD model [2, 3, 4, 5, 6]. In the literature, LSTM is a popular
architecture for sequential modeling of the VAD task showing state-
of-the-art performance [2, 7]. Theoretically, LSTMs can model any

arbitrary length of history as it can learn to forget the past. However,
in practice, the gates learned from data may not always operate as
expected. In VAD tasks, LSTMs have been observed to suffer from
state saturation problems in very long utterances. One solution to
address this is to periodically reset the LSTM states. However, this
approach is a bit ad-hoc because the time of where to reset the state
is empirically chosen.

In this paper we propose a modeling alternative to LSTMs to
address the saturation issue. Architectures which perform convo-
lution in time [8, 9, 10, 11] have been explored as alternatives to
LSTMs for general acoustic modeling tasks. In this paper, we adopt
the WaveNet architecture [9] that models temporal patterns with di-
lated convolution and gated activation as shown in Fig. 1.

Comparing to conventional time convolution, dilated convolu-
tions allow broader receptive field with fewer layers by skipping
some inputs. In the proposed architecture, gated convolution activa-
tions are used to precisely control information flows. Also, residual
connection is added to ease the training of very deep neural network.

We compared the proposed architecture against LSTM for a
VAD task on Google Voice Typing [12] (using your voice to dictate
a message on phone). Results show that the proposed architecture
achieves 14% relative improvement in terms of false alarm (FA)
when fixing false reject rate (FR) at 1%.

The rest of this paper is as follows. In Section 2, we describe
the proposed neural network architecture. The experimental setup
is described in Section 3 and results and analyses are presented in
Section 4. Finally, Section 5 concludes the paper.

2. NEURAL NETWORK ARCHITECTURE

Temporal modeling using CNNs has been explored before in the lit-
erature [8, 10, 13, 14]. In this work, we explore using the WaveNet
style architecture for temporal modeling. This architecture has been
explored previously for text-to-speech (TTS) applications [9] but not
for acoustic modeling on ASR or VAD. The proposed architecture
differs from regular CNN in three respects: it uses (1) dilated causal
convolutions, (2) gated activations and (3) residual connections, all
of which will be described in subsequent sections.

2.1. Dilated Convolution

Temporal modeling with non-recurrent networks normally relies on
an input context window. For example, in CNNs the convolution
filters take in a window of adjacent frames as inputs to capture the
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Fig. 1: Overview of LSTM (left) and the proposed architecture (right)
for voice activity detection.

acoustic context. Using dense input context windows increases the
amount of model parameters, which is particularly a problem when
doing long temporal modeling with large context windows. To ad-
dress this problem, a dilated convolution (also called atrous, or con-
volution with holes) [9, 15, 16, 17, 18] is adopted, where the convo-
lution filter is applied over an area larger than its length by skipping
certain input values. It is equivalent to a convolution with a larger
filter derived from the original filter by dilating it with zeros, but is
significantly more efficient. A dilated convolution effectively allows
the network to operate on a coarser scale than with a normal convo-
lution. This is similar to pooling or strided convolutions, but here
the output has the same size as the input. As a special case, dilated
convolution with dilation is equivalent to the standard convolution.
A stack of dilated convolutions enable networks to have very large
receptive fields with just a few layers, while preserving the input res-
olution throughout the network as well as computational efficiency.

For speech tasks, especially the endpointing task, latency is also
a crucial criterion in addition to accuracy. Normally, CNN filters
takes in both left and right contexts to use both the history and future
information for accurate prediction. Since latency is a concern, we
need to limit the use of right context. In [9], the use of only the left
context, i.e. causal convolution, is sufficient for good prediction per-
formance for the TTS task. In this work, we adopt the same dilated
causal convolution (shown in Fig. 2) for VAD.

2.2. Gated Activation

Gates play an important part in the LSTM modeling [19, 20], as
they control the flow of information between time steps and layers.
In WaveNet, a simple gating mechanism is adopted to control the
information flow through each layer. Similarly, in this work, we use
gating by first applying the hyperbolic tangent nonlinearity to the
output of dilated convolution and then attenuating it with sigmoid

Fig. 2: Dilated convolution with dilations 1, 2, 4 and 8.

Fig. 3: Gated convolution.

gates (shown in Fig. 3). Hence, learnable convolution filters W are
splitted into Wf for filter and Wg for gate. Final activation of layer
k, hk, is obtained by Eq. (1):

hk = tanh(Wf,k−1 ∗ xk−1)� σ(Wg,k−1 ∗ xk−1) (1)

where σ is the logistic sigmoid non-linearity while � stands for
element-wise dot product.

2.3. Residual Connection

The depth of the model is important for learning robust representa-
tions, but also comes with a challenge of vanishing gradients. Resid-
ual training [21] has been found to be an effective way to address this
issue and build very deep networks. For speech tasks, LSTMs have
not shown improvements beyond ten layers [22], but CNNs with
residual connections have shown improvements with many more
layers [21]. Following a similar configuration to WaveNet [9], we
also use residual connections between each layer, allowing us to train
a network with 36 layers. Bypassing paths are created by accumu-
lating outputs of each layer as shown in Fig. 4. Note that small
dimensional matching layers are used to accumulate outputs of the
same size. These bypassing paths are presumed to be the key factor
that eases the training of very deep networks.

3. EXPERIMENTAL DETAILS

3.1. Data

We conduct experiments on about 18,000 hours of noisy training
data consisting of around 6.5 million English utterances This data
set is created by artificially corrupting clean utterances using a sim-
ulator to add varying degrees of noise and reverberation [23]. The
clean utterances are anonymized and hand-transcribed voice typing
recordings, and are representative of Google voice typing traffic on
Android. Noise signals, which include music and ambient noise
sampled from YouTube and recordings of daily life environments,
are added to the clean utterances at SNRs ranging from 0 to 30 dB,
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Fig. 4: Residual connection: bypassing paths to accumulate in-
puts/outputs of each layer.

with an average SNR of 11 dB. We evaluate our models using sim-
ulated noisy data. Around 15 hours (13K utterances of anonymized
Android voice typing utterances were used. Noise is added using
the simulator with a configuration distribution that approximately
matches the training configurations. The noise snippets do not over-
lap with training.

3.2. Model configuration

The acoustic features used for all experiments are 40-dimensional
log-mel filterbank energies, produced using a 25ms long sliding win-
dow computed every 10ms. Table 1 shows the configuration used in
our experiments. Specifically, we used 64 filters for each convolu-
tion layer. The filter size was 64-d input activations with 3 frames.
We used 36 convolution layers with a dilation rate repeating 1, 2,
4 and 8. A total left context of 270 frames is used given the above
design parameters. In our experiments adding extra hidden layers
beyond 36 did not improve the performance.

For the baseline LSTM configuration, we used 10 layers of
LSTMs. Each layer consists of 64 memory cells. We also applied
residual connection to LSTMs to ease the training of deeper models.
Again, adding extra LSTM layers did not improve performance. The
total number of parameters is roughly 400k for both LSTM and con-
volution models. The outputs of convolution layers or LSTMs are
fed into one DNN layer with 64 hidden units, and finally a softmax
layer with 2 output targets, speech and non-speech.

All networks were trained with the cross-entropy criterion using
asynchronous stochastic gradient descent (ASGD) [24]. The weights
for DNN layers were initialized using the Glorot-Bengio strategy de-
scribed in [25], while all LSTM parameters were uniformly initial-
ized to lie between -0.02 and 0.02. We used a constant learning rate
of 2e-5.

model parameters

number of filters per convolution layer 64
filter size 64 × 3

number of convolution layers 36
dilation 1,2,4,8,1,2,4,8...
context 270 left frames

number of units per DNN layer 64
parameters ˜400k

Table 1: Model configuration used in the experiments.

Fig. 5: FA-FR curves for the proposed architecture and LSTM.

4. RESULTS

In this section, we present our experimental results on building a
VAD using dilated convolution and gating.

4.1. Results using proposed architecture vs LSTM

The FA-FR (False Accept against False Rejection) curve is fre-
quently used to describe binary classification tasks. Here, we report
the FA-FR curve for speech classification, where the speech poste-
rior is thresholded to obtain the VAD decision. In this case, false
accepts (FA) are incorrect predictions that classify the audio frames
as speech when they are actually non-speech. Similarly, false rejec-
tions (FR) are speech frames misclassified as non-speech. Lower
is better for both metrics. As shown in Figure 5, the proposed ar-
chitecture provides better FA/FR than LSTMs. Specifically, a 14%
relative improvement in FA is achieved at the operating point of 1%
FR as shown in Table 2.

Table 2: FA at fixing 1% FR

model proposed architecture LSTM
FA 5.67 6.66

4.2. Results using proposed architecture vs conventional CNN

Next, we further analyze the importance of key factors from the
proposed architecture that distinguishes it from conventional CNNs,
which do not include dilation, gated activation and residual con-
nection. Figure 6 shows the FA-FR curves for conventional CNNs,
CNNs with residual connection, CNNs with gating and residual
connections and dilated CNNs with gating and residual connections.
Without the residual connection, performance degrades rapidly
when adding more than 20 convolution layers. Hence, the conven-
tional CNN reported in this work uses only 20 convolution layers
while others have 36 convolution layers. As shown in Table 3,
16.6% improvement achieved by the residual connection, while
the gate control reduced FA by another 14% relatively and dilated
convolution by further 19% relatively.

Table 3: FA at fixing 1% FR

model FA
conventional CNN 9.76%

+ residual connection 8.14%
+ gating 7.10%

+ dilation 5.67%
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Fig. 6: FA-FR curves for the proposed architecture and LSTM.

Fig. 7: An example of an over 1 minute long audio. Posteriors of
speech generated with LSTM (bottom) and the proposed architecture
(above).

4.3. Robustness To Long Audio Signals

To further understand the gains with the dilated convolutions Fig-
ure 7 shows the comparison of the speech posteriors produced by the
LSTM network and the proposed dilated convolutional network for
each frame of an over 1 minute long audio signal. The audio is col-
lected from a medical conversation between doctor and patient with
consent of the patient [26]. As shown in Figure 7, after processing
40 seconds of audio the LSTM becomes trapped into a dead state
and start to reject the audio (speech posterior goes closer to zero).
On the other hand, the proposed architecture is robust to processing
longer audio because of its stateless design.

5. CONCLUSIONS

In this study we explored a neural network architecture incorporating
key parts of dilated convolution, gate control and residual connection
for voice activity detection. Experiments on a Google Voice Typing
task illustrated that the proposed architecture achieved a 14% FA rel-
ative improvement over the LSTM when fixing the FR at 1%. Anal-
ysis showed that gate control to convolution activations and broader
receptive field using dilated convolution both contribute to the im-
provement. Finally, the proposed architecture is more robust to pro-
cessing longer audio.
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