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ABSTRACT

Speech activity detection (SAD) is an important component
for various speech processing applications and has been re-
searched extensively recently. The pitch continuity, a signif-
icant characteristic of speech, however, has not successfully
played a role in existing SAD methods. In this work, we pro-
pose a novel way to integrate the pitch continuity with pitch-
related features. Practice is carried out through the Combo-
SAD approach: We examine three consecutive frames and
assume that they all have the same pitch as the center frame
due to pitch continuity. Corresponding feature values are re-
computed at the adjusted pitch location and then used in the fi-
nal expression. The new combo feature is evaluated with var-
ious types of additive noise at different signal-to-noise ratios
(SNR). The results show that the new feature leads to better
SAD performance (with an up to 39.3% relative improvement
on miss rate compared to Combo-SAD). We also introduce a
novel variant of the underlying autocorrelation function and
illustrate how it can improve the accuracy of pitch detection.

Index Terms— autocorrelation function, speech activity
detection, pitch continuity, pitch detection.

1. INTRODUCTION

Speech activity detection (SAD), i.e., discrimination of
speech or nonspeech segments in an audio input, is a sig-
nificant part in speech processing. Based on its outcome,
much follow-up work can be done, such as speech coding,
speech recognition, and speaker recognition. Recently, SAD
has received increased interest due to the ARPAs RATS ini-
tiative and the NIST OpenSAD evaluation [1]. Many SAD
methods/systems have been developed, along with much ef-
fort to compare their performance [2, 3].

SAD is relatively straightforward for clean speech in-
puts. What differentiates the various SAD methods is the
robustness against noise interference. Energy based, or more
sophisticated acoustic feature based SAD methods tend to
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produce more false alarms for noisy speech inputs. Phonation
(or voicing) feature based methods, by applying the fact that
all voiced sounds are periodic, are advantageous in mitigat-
ing noise that typically lacks the periodicity or has different
periodicity than speech.

Among all the SAD methods based on phonation fea-
tures, harmonics related features serve as a major ingredient,
especially the pitch F0. For example, in the Combo-SAD
technique [4], 3 of the 5 features depend on pitch. They show
great robustness and deliver good SAD accuracy in various
acoustic environments. However, these harmonics-dependent
features heavily rely on the harmonics in individual frames,
making it vulnerable to the interference of noise with strong
harmonics. To solve it, we resort to another crucial property
of speech — pitch continuity, that is, human speech exhibits
a smooth, gradual pitch trajectory in speech. And we can rea-
sonably assume that pitch is unchanged between the adjacent
frames. But for noise segments, this phenomenon is not typ-
ically observed. Even though the noise may contain periodic
or quasi-periodic signals, they usually come from multiple
sources in the background and dont share a continuous pitch
contour. For this reason, pitch continuity should be a power-
ful tool for us to distinguish noise from speech. Nonetheless,
it has so far only been exploited in pitch detection algorithms
[5], but has not been utilized in SAD. In this work, a novel
method is proposed to incorporate pitch continuity into pitch-
related features to improve the SAD performance.

Toward that goal, three features in the Combo-SAD ap-
proach [4] are selected as the working vehicle. The new
features are all computed frame-by-frame, and the process
can be described in three steps: 1) For each frame, locate
the pitch F0; 2) Use it to compute the feature values of the
current frame, as well as of two neighboring frames by as-
suming pitch continuity; and 3) Choose the median of them
as the final feature value. The new method is evaluated with
noisy speech data and shows a substantial improvement over
the original one. Additionally, we introduce a modified form
of the autocorrelation function for pitch detection. It is illus-
trated that the new form helps compensate for the windowing
effects and prevents over-compensation from happening [6].
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2. EXTENDED PITCH-BASED FEATURES

In this section, we first review the three pitch-related features
in the Combo-SAD method [4]. Then we discuss the autocor-
relation function (ACF) used in them. Based on the experi-
ments on synthetic speech, we propose an improved variant
of ACF for pitch detection. Finally, pitch continuity is inte-
grated with these features to elevate the robustness of SAD.

2.1. Review of the Combo-SAD method

Sadjadi and Hansen [4] propose a 1-dimensional combo fea-
ture that is compressed from 5 features via Principal Compo-
nent Analysis (PCA). Because our main purpose in this study
is the use of pitch continuity, we focus on three of these five
features, namely, harmonicity, clarity, and periodicity that are
all related to the pitch. We leave out the prediction gain and
perceptual spectral flux.

The procedure in which harmonicity, clarity, and period-
icity are computed is briefly summarized below. Interested
readers are referred to [4, 7] and the references therein for
more details of the algorithms.
1) Harmonicity (or harmonics-to-noise ratio): the relative
height of the maximum autocorrelation, rxx,s (we will dis-
cuss on it later), peak in the plausible pitch range (62.5 to 500
Hz, or the time domain equivalents of 16 ms to 2 ms):

H(t) =
rxx,s(t, kmax)

rxx,s(t, 0)− rxx,s(t, kmax)
,

kmax = argmax
2ms≤k≤16ms

rxx,s(t, k)

2) Clarity: the relative depth of the minimum average magni-
tude difference function (AMDF):

AMDF (t, q) ≈ 0.8×
√
2rxx,s(t, 0)− rxx,s(t, q),

C(t) = 1− AMDF (t, qmin)

AMDF (t, qmax)
,

qmin(max) = argmin(max)
2ms≤q≤16ms

AMDF (t, q)

3) Periodicity: the maximum peak of the harmonic product
spectrum (HPS) [9] in the short-time Fourier transform do-
main:

P (t) = HPS(t, ωmax),

ωmax = argmax
62.5Hz≤ω≤500Hz

H(t, ω)

where kmax, qmin and ωmax in Harmonicity, Clarity and Pe-
riodicity, respectively, are all different forms of the same en-
tity, pitch. Both kmax and qmin are the reciprocal of F0, and
ωmax is exactly the F0.

Fig. 1. Normalized ACFs: a) cACF; b) sACF; and c) eACF
with β = 0.5. The signal has a fundamental period of 15.74
ms (or a pitch of 63.5 Hz). Solid dots denote kmax where the
normalized ACF exhibits a peak.

2.2. Exponential ACF

Both harmonicity and clarity rely on a scaled autocorrela-
tion function (ACF) as proposed by [6]. The scaled ACF
(sACF) is defined by dividing the conventional ACF (cACF),
rxx,c(t, k) =

∑N−1
j=0 x(j)w(j)x(j + k)w(j + k) by the ACF

of the window function itself:

rxx,s(t, k) =
rxx,c(t, k)∑N−1

j=0 w(j)w(j + k)
(1)

where w(j) is a Hanning window of 32 ms long, x(j) is the
input signal, and t and k are frame and autocorrelation lag in-
dices, respectively. The frame shift rate is 10 ms. The purpose
of the division is to compensate for the windowing effect that
tapers the numerator of eq. (1) towards zero for large lags. A
nice by-product of the division is that it can mitigate impacts
of strong formants [4, 6, 8].

Both cACF and sACF can be normalized by their value at
k = 0, respectively. The normalized cACF has a range of [0,
1], while the normalized sACF does not guarantee this range.
When the normalized sACF exceeds 1, it will be replaced by
its reciprocal to satisfy the range requirement of [0, 1].

We use synthetic speech to assess the normalized cACF
and sACF for pitch detection. The glottal source is simu-
lated using the LF model [9], and the vocal tract response
is approximated by the first formant. Three F0 values (63.5,
125, and 260 Hz) and two first formant frequencies (260 and
680 Hz) are considered to examine the impact of window-
ing and formant oscillation. These two formant frequencies
roughly correspond to the lowest and highest first formant fre-
quency in speech. As in [6], we find that sACF can sometimes
over-compensate for the windowing effect, yielding PDA er-
rors. Fig. 1 b) represents one such example where the over-
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compensation occurs at around 15 ms. Once taking the recip-
rocal, there appears a drop in the plot when k > 15 ms and
hence, an erroneous pitch estimation.

A little thought convinces us to introduce an exponent to
eq. (1) to achieve a good balance between cACF and sACF.
We call the new variant the exponential ACF (eACF):

rxx,e(t, k) =
rxx,c(t, k)

[
∑N−1
j=0 w(j)w(j + k)]β

(2)

2.3. Integration with pitch continuity

In Section 2.1, the harmonicity, clarity, and periodicity are
all estimated by looking at harmonics in individual frames.
Consequently, SAD using these features tends to report more
false alarms, i.e., mistaking a noise segment for a speech one
in the presence of noise. To overcome this problem, pitch
continuity in speech is explored and integrated here.

We assume that for voiced segments, the pitch remains ap-
proximately unchanged between two adjacent, short frames.
Lets consider 3 consecutive frames. Assume that the index of
the current frame is t and that the associated pitch resides at
pt (kmax, qmin or ωmax). Then we compute the correspond-
ing values: rxx,s, AMDF and HPS for frames t-1, t, t+1
all using pt. We call them corresponding values because they
are directly corresponded to the pitch. For a speech segment,
these values should be quite close to each other in continuous
frames. On the other hand, the corresponding values of frame
t-1 and t+1 at pt may differ considerably from that of frame t
for noise segments, owing to the absence of the continuity of
the harmonics. This is illustrated in Fig. 2 on real-world data,
where it can be seen that kmax vary dramatically among noise
frames, but stay almost unchanged among speech frames.

Based on the above findings, we come up with the fol-
lowing method to integrate pitch continuity. We introduce the
superscript ’ to designate a feature that is based on pitch conti-
nuity and the subscript t in kmax, qminandωmax to designate
the pitch of the frame t. New harmonicity, clarity, and period-
icity are computed as follows:
1) Harmonicity:

H
′
(t) = median

i=−1,0,1
{ rxx,s(t+ i,kmax,t)

rxx,s(t+ i, 0)− rxx,s(t+ i,kmax,t)
}

(3)

2) Clarity:

C
′
(t) = median

i=−1,0,1
{1−AMDF (t+ i,qmin,t)

AMDF (t+ i, qmax,t+i)
} (4)

3) Periodicity:

P
′
(t) = HPS

′
(t) = median

i=−1,0,1
{HPS(t+ i, ωmax,t)} (5)

It is important to note that the described method is quite
different from a simple median filter that works directly on the

Fig. 2. Illustration of pitch continuity for (a) noise and (b)
voiced speech. (c) and (d) show the normalized ACF of (a)
and (b) respectively. The three curves in (c) and in (d) denote
the left, the center, and the right frame (from top to bottom).
The red squares denote the kmax of each frame. The red dash
line denotes kmax of the middle frame for ease to compare.

final features. For instance, in Fig.2.(c), if we apply a normal
median filter to it, the input values would be the red squares
instead of the ones on the red dash. And because they are all at
their maximums, a median filter won’t decrease the value that
much as we do now. Our method takes into account the posi-
tion of those maximums, which is the pitch and thus has to be
continuous among frames. We enable this by playing a trick
of reversing the process. That is, we first work out the pitch
from the current frame by finding the maximum/minimum,
and then plug it into adjacent frames to obtain its correspond-
ing values there. On the other hand, in the original method,
only the maximum/minimum values are used for feature com-
putation, ignoring the implied pitch, let alone its continuity.

It should also be noted that the harmonicity calculation
is totally based on the harmonics-to-noise ratio of a frame,
not the absolute energy of the harmonics. If the audio has
drift noise or other slow-varying artifacts, the harmonicity
calculation can be improved by first computing frame-wise
zero crossing rates. If the zero crossing rate is below a preset
threshold, we set the harmonicity for that frame to 0.

Finally, we adopt the approach in [4] for feature fusion
and decision making, for a more straightforward comparison.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are conducted on two databases. One is the
training subset of the New England Region of the TIMIT
database [10]. The other one is the Baihu database, a Chi-
nese corpus we have collected for this study, in order to better
examine the effectiveness of the pitch-continuity method on
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type 0 dB 5 dB 10 dB 20 dB
A B A B A B A B

office 9.08 17.05 6.24 12.98 4.65 7.30 3.19 3.47
volvo 12.67 19.22 7.28 12.95 4.68 7.91 3.58 3.63
factory 12.36 13.66 5.83 6.04 3.66 3.77 2.71 2.50
babble 16.56 12.38 9.17 6.87 5.54 4.23 3.07 2.60
white 2.84 2.45 2.68 2.27 2.79 2.18 2.80 2.19
subway 6.38 5.80 3.64 3.81 2.90 2.80 2.41 2.02
pooled 10.23 12.07 6.15 7.61 4.22 5.35 3.01 2.98

Table 1. Comparison of minDCF in % between the present
method (Column A) and the Combo-SAD (Column B, our
implementation) on the Baihu database.

a tone language. The Baihu database is composed of speech
from 10 male and 10 female speakers. Most of the speakers
each speak 50 Chinese utterances, and each utterance con-
tains only one speech segment. Two other female speakers
contribute 80 and 100 utterances, respectively, and each ut-
terance contains two well-separated speech segments. The
actual starting and ending points of speech segments are man-
ually labeled.

The noisy data is generated by adding noise data to the
above clean speech, at a specified SNR by FaNT [11]. Six
different types of noise are available: white, babble, factory,
volvo (from the NOISEX-92 database [12]), subway noise
(from the FaNT distribution), and finally an office background
noise that we recorded [13]. The Baihu database is freely
available upon request.

Error rates are estimated from the amount of time that
is misclassified by the system, in the way as specified in the
official NIST OpenSAD [1]. The only difference is that if the
result shows a silence or pause between two talkspurts that
is less than 0.4 seconds, we will smooth it as a voice part.
The Detection Cost Function (DCF) in [1] will be used as the
main metrics for performance evaluation.

Table 1 presents the minDCF results for 6 different noise
types and at 4 different SNR levels on the Baihu database.
The corresponding results of [4] (our own implementation)
are also given. As shown in Table 1, the present method over-
all outperforms the original Combo-SAD method. Specif-
ically, our method is able to significantly lower minDCF
for volvo, factory, and office noise types. This is expected
because pitch continuity is most effective in non-stationary
or instantaneous types of noise. For the other 3 types, the
Combo-SAD method is better. Recall that in the proposed
method, we excluded prediction gain and perceptual spectral
flux, while we maintained them in our implementation of the
Combo-SAD. It is possible that by adding these two features,
the result for the present method can be further improved.

In Table 1, we pool together all the test data from 6 noise
types. It can be seen that the present method lowers minDCF
across almost all SNR levels. For example, at SNR = 0
dB, the minDCF of the present method is 10.23%, a relative
reduction of more than 15% when compared to that of the

(a) Baihu database (b) TIMIT database

Fig. 3. Comparison of ROC curves between the present
method and Combo-SAD on (a) aggregate data of 6 noise
types and 4 SNR levels on Baihu database, and (b) the TIMIT
database added by volvo noise at SNR = 5 dB.

Combo-SAD.
We also aggregate all the data by 6 noise types and 4 SNR

levels. Fig. 3 (a) depicts the Receiver Operating Character-
istic (ROC) curves for this aggregated set of data. At the 3%
false-alarm rate, as we can see, the miss rate is 8.5% for the
present method and 14% for the Combo-SAD method, which
pertains to an improvement of 39.3% relatively.

The result for the TIMIT database is provided in Fig. 3
(b), where only the ROC curve for the volvo noise and SNR =
5 dB is plotted, because of the interest in in-car applications.

4. CONCLUSION

In the above, we first reviewed Combo-SAD and the under-
lying ACF calculation of [6]. We used synthetic speech to il-
lustrate the effects of windowing and tapering in ACF as lags
increase. Compared to [6], we introduced an exponent pa-
rameter β in eq. (2). As shown in Fig. 1, use of β can effec-
tively mitigate the windowing effect while preventing over-
compensation from happening. We plan to optimize the value
of β for accurate pitch detection.

We also propose a feasible way to integrating pitch con-
tinuity with harmonicis related features. Its effectness was
evaluated by comparing the new features to the original ones
on artificially generated noisy data. For the two databases
(TIMIT and Baihu), the present method was advantageous in
three noise types, and was comparable to the Combo-SAD
method for the other three types. Overall, we achieved better
performance, even though in our method we did not use the
features of prediction gain and perceptual spectral flux.

We have started to collect real-world noisy speech data to
evaluate our method and other methods. We will also explore
how to gain access to OpenSAD data to augment our exper-
iments (currently they are only available to the participants
of the openSAD evaluation). Finally, the possibility of in-
corporating pitch continuity in deep neural nets is also worth
investigation.
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