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ABSTRACT

In this paper, we have explored the role of combining prosodic vari-

ables with the existing acoustic features in the context of children’s

speech recognition using acoustic models trained on adults’ speech.

The explored acoustic features are Mel-frequency cepstral coeffi-

cients (MFCC) and perceptual linear prediction cepstral coefficients

(PLPCC) while the considered prosodic variables are loudness,

voice-intensity and voice-probability. An analysis presented in this

paper shows that, given that the textual content remains the same,

the considered prosodic variables exhibit very similar contours for

adults’ and children’s speech. At the same time, the contours differ a

lot when the context is different. Consequently, inclusion of prosodic

information reduces the inter-speaker differences and increases the

class discrimination. This subsequently improves the recognition

performance. Further improvements are obtained by projecting the

feature vectors obtained by combining the two features to a lower-

dimensional subspace. The same has been experimentally verified

in this study for mismatched speech recognition using deep neural

network (DNN) based system. On combining MFCC (PLPCC) and

prosodic features, a relative improvement of 16% (14%) is noted on

decoding children’s speech using adult data trained DNN models.

Index Terms— Children’s ASR, acoustic mismatch, prosodic

variables, feature projection.

1. INTRODUCTION

The primary objective of speech production and perception mecha-

nism is to convey messages through a sequence of legal sound units.

The intelligibility of spoken message is enhanced by including the

information from melody, timing and stress in speech. This as-

pect enables the listener to segment continuous speech into phrases

and words with ease [1]. Furthermore, speech signal also conveys

many more lexical and non-lexical information such as tone, promi-

nence, accent and emotion. The characteristics of the speech sig-

nal that enable humans to perceive these effects are collectively re-

ferred to as prosody. Prosody is concerned more with those ele-

ments of speech that reflect the properties of syllables and larger

units of speech. A human listener can better recognize more fa-

miliar speakers in comparison to relatively less familiar ones due

to speaker-specific prosody and the idiosyncrasies that are recog-

nized by the listener [2]. Prosody has been studied as a knowledge

source for speech understanding and has been explored in several

tasks related to speech processing. Inclusion of prosodic informa-

tion has been effectively used for language identification [3–5], text-

to-speech (TTS) and voice conversion systems [6, 7] and automatic

speech recognition (ASR) [8–10].

In this paper, we have explored the role of prosodic feature

in the context of children’s mismatched ASR. The task of recog-

nizing children’s speech using acoustic models trained on speech

data from adult speakers is referred to as the mismatched ASR in

this work. Earlier works have reported highly degraded recognition

performances in the case of mismatched recognition tasks. The

observed degradations are mainly due to large differences in both

the acoustic and the linguistic correlates between the speech from

adult and child speakers [11–14]. Several studies have been reported

for addressing the acoustic mismatch in the context of children’s

mismatched ASR. Recently, a number of works have also explored

acoustic modeling based on deep neural network (DNN) for improv-

ing children’s speech recognition [15–19]. Yet, to the best of our

knowledge, the role of prosodic features has not been explored in

the context of children’s mismatched ASR employing DNN-based

acoustic modeling. The experimental evaluations presented in this

study explore the effectiveness of combining acoustic features like

Mel-frequency cepstral coefficient (MFCC) [20] and perceptual

linear prediction coefficients (PLPCC) [21] with the prosodic vari-

ables in the context of children’s mismatched ASR. For contrast, we

have also explored the effectiveness of combining prosodic features

with MFCCs/PLPCCs in those cases where the acoustic models

are trained on speech data collected from both adult and children

speaker. In both the cases, significant improvements are observed

by the inclusion of prosodic information.

The rest of this paper is organized as follows: In Section 2, the

motivation for using prosodic features is presented. The experimen-

tal studies demonstrating the effectiveness of including prosodic fea-

tures in the context of children’s speech recognition are presented in

Section 3. Finally, the paper is concluded in Section 4.

2. MOTIVATION FOR USING PROSODY FEATURES

The prosodic variables explored in this work are loudness (LD),

voice-probability (VP) and voice-intensity (VI). The prosody fea-

tures used in this study are extracted using openSMILE [22] toolkit

following procedure outlined in [23]. As a preliminary study, inclu-

sion of prosodic information is first explored on the connected digit

recognition task. This is followed by an analysis to justify why the

inclusion of prosodic information helps in digit recognition.

2.1. Connected digit recognition

The training and the test data for the connected digit recognition

was obtained from the TIDIGITS database [24]. This speech corpus

contains 11.3 hours of speech data from 326 speakers (225 adults

and 101 children). Each of the speakers utter one to seven digits
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Table 1: The WERs for the GMM-HMM-based connected digit

recognition system trained using MFCC features. The WERs ob-

tained with respect to GMM-HMM system trained after frame-level

concatenation of MFCC and prosody features are also given.

Test WER (in %)

set MFCC MFCC+Prosody

Adult 1.65 1.91

Child 9.17 6.93

long strings consisting of eleven different digits (0-9 and ‘OH’). The

age of the adult speakers contributing to this database varies from

17 to 70 years. The child speakers, on the other hand, belong to an

age group of 6 to 15 years. A train set comprising of 5.3 hours of

speech data from 197 adult male/female speaker was created from

this database. Two different test sets were derived for testing. The

first test set was composed of 1.6 hours speech data from 81 adult

speakers. The other test set comprised of 1.9 hours speech data from

49 children. The speech data used for the connected digit recognition

task was sampled at 8 kHz rate.

In order to evaluate the effectiveness of including prosodic

information, an ASR system was developed on the adult data us-

ing the Kaldi speech recognition toolkit [25]. For extracting the

front-end acoustic features, speech data was first analyzed using

overlapping Hamming windows of length 20 ms with frame rate of

100 Hz. A 23 channel Mel-filterbank was employed to compute

the 13-dimensional base MFCC features. This was followed by

time-splicing of the base features considering a context size of 9,

i.e., ±4 frames. The dimensionality of the resulting time-spliced

features was then reduced to 40 using linear discriminant analysis

(LDA) [26]. Further de-correlation of the feature vectors was done

through maximum likelihood linear transform (MLLT) [27]. Mean

and variance normalization (MVN) was also performed. In order to

develop the required classifier, the 11 digits (0-9 and ‘OH’) were

modeled as whole words using continuous density hidden Markov

models (HMM) employing 3 states per word including silence.

Each HMM state, in turn, was modeled using 6 diagonal-covariance

Gaussian mixture model (GMM). An equilikely wordnet was em-

ployed during testing. The metric used to measure the recognition

performance is word error rate (WER).

The WERs for the connected digit recognition system are given

in Table 1. It is to note that, only adults’ speech training data was

used for learning the GMM-HMM parameters. Therefore, the recog-

nition performance for adults’ speech test set is much better than

that for children’s speech. As highlighted earlier, the acoustic at-

tributes of speech from adult and children speakers differ signifi-

cantly. Hence, the observed differences in recognition performance

are very much obvious. Similar degradation in performance was

noted in earlier works as well [28–30]. Similar degradation is ob-

served when systems trained on children’s speech are employed for

decoding the adults’ speech data.

To study the effect of including prosodic information, another

digit recognition system was retrained on adults’ data after append-

ing the prosodic and acoustic features. For extracting the prosodic

variables, the speech data was analyzed into overlapping frames

using Hamming window of length 20 ms with frame rate of 100
Hz. The 3-dimensional prosodic features were computed using the

openSMILE [22] toolkit. Next, the prosodic variables and base

Table 2: WERs for the connected digit recognition task with respect

to children’s speech test set demonstrating the effect of including

prosodic information along with acoustic features.

WER (in %)

Digit MFCC
MFCC

Digit MFCC
MFCC

+ Prosody + Prosody

One 5.40 7.10 Six 6.00 3.80

Two 4.90 1.60 Seven 9.60 5.60

Three 7.90 7.20 Eight 18.80 20.60

Four 6.30 4.40 Nine 1.00 0.50

Five 16.00 5.40 Oh 5.40 4.00

MFCC feature vectors were concatenated at the frame level mak-

ing the base feature dimension equal to 16. This was followed by

time-splicing, dimensionality reduction and de-correlation. The fi-

nal feature vector dimension after LDA+MLLT was chosen as 40.

Mean and variance normalization was also applied to the feature

vectors. The specifications of the GMM-HMM architecture was the

same as explained earlier. The WERs for the adults’ and children’s

speech test sets after concatenating MFCC and prosodic features

are given in Table 1. The WER for children’s speech is observed to

reduce significantly when prosodic information is included.

For children’s speech test set, the WER for each of the eleven

digits with and without the inclusion of prosodic variables are en-

listed separately in Table 2. The corresponding WERs for the case

when only MFCC features are used are also tabulated for proper

contrast. As evident from the table, the WER is noted to reduce

for most of the digits by including prosodic variables. For majority

of the digits, the reduction in WER is very large. The WERs for

all those cases have been presented in bold. On the other hand, the

WER is found to increase for digits one and eight. To summarize,

appending prosodic variables with MFCC is somehow increasing the

discrimination among the classes thereby reducing the WER. In the

following sub-section, we present an analysis which attempts to jus-

tify these observations.

2.2. Analyzing the cause of improved recognition performance

In order to develop ASR systems, given the training data, the relevant

front-end features are extracted first. The front-end features along

with the class-labels are then used to learn the statistical parameters.

The performance depends on quality of the front-end features as well

as the employed statistical modeling approach. If the front-end fea-

tures are such that the discrimination among the classes is more, then

better performance will be obtained. In other words, the front-end

features should be such that the within-class differences are minimal.

On the other hand, the between-class differences are large. Using

this reasoning, we studied the nature of explored prosodic variables

for each of the classes. The results tabulated earlier suggest that,

for those digits where the WER had decreased, the nature should be

similar for a given class irrespective of the speaker. In other words,

for any given digit (class), the deviation in the value of the prosodic

variables for adult and child speakers should be very small. At the

same time, the nature should be dissimilar for those classes where

adding prosodic information did not help.

In order to study the nature of any particular prosodic variable,
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Fig. 1: Smoothed contours depicting the mean loudness for few of

the digits. The x-axis depicts the frame index while the y-axis repre-

sents the mean value.

smooth contours were derived for each of the classes as follows.

Forty isolated utterances of a given class, say digit one, were se-

lected at random from the database. Twenty of those were collected

from adults while remaining twenty were from child speakers. Next,

the prosodic variables were computed for each of the utterances from

the adult speakers. The mean value for each of the frames was then

computed using all the twenty examples. In a similar manner, the

mean was computed using the examples from the children. Finally,

a seventh-order polynomial function was fitted over the mean data to

derive a smooth contour. These steps were repeated for each of the

classes and each of the prosodic variable kinds.

The smooth contours for loudness are shown in Fig. 1. For each

of the classes, the blue (solid) curves are for the case when data from

adult speakers is used. The red (dash-dot) curves are obtained using

data from children. The plots are shown for few of the digits only

due to lack of space. It is to note that, for digits three, four, five, six,

seven, nine and oh, the contours look very similar for both adult and

child speakers in each case. On the other hand, the contours for digits

one and eight for adult speakers are starkly different from those for

the children. The smooth contours for the remaining two prosodic

variables are shown in Fig. 2 and Fig. 3, respectively. Observations

similar to those stated in the case of loudness are evident in these

cases as well. Referring to Fig. 1 - 3 and Table 2, the following three

observations are worth highlighting:

• The smooth contours for the mean of the explored prosodic

variables derived using adult and children speech happen to

be very similar for those cases where the WERs have reduced.

• The WER had increased significantly for digits one and eight

and the contours for adult and child speakers are also starkly

different in those cases.

• For two different digits, the prosodic contours do not look

similar thereby enhancing the inter-class differences.

Thus it may be concluded that using prosodic features reduces the

within-class differences while enhancing the between-class differ-

ences. Therefore the recognition performance for children’s speech

with respect to adult data trained digit recognizer improves signifi-

cantly. Motivated by these results, the role of prosodic variables in
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Fig. 2: Smoothed contours depicting the mean intensity for few of

the digits. The x-axis depicts the frame index while the y-axis repre-

sents the mean value.
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Fig. 3: Smoothed contours depicting the mean voice-probability for

few of the digits. The x-axis depicts the frame index while the y-axis

represents the mean value.

the context of continuous speech recognition especially under mis-

matched setup was explored next.

3. CONTINUOUS SPEECH RECOGNITION

In this section, we study the role of prosodic features in the context

of continuous speech recognition task.

3.1. Experimental setup

For experimental evaluations, ASR systems were developed on the

15.5 hours adults’ speech data from WSJCAM0 British English

speech corpus [31] using the Kaldi toolkit. There are a total of 7861
utterances from 92 adult (male/female) speakers with approximately

90 sentences per speaker in this train set. For mismatched testing,

the children’s speech test set of the PF-STAR British English speech

database [32] was employed. This test set contains 1.1 hours of
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Table 3: WERs for the children’s speech test set with respect to

acoustic models trained on adults’ speech. The WERs are given for

the cases when MFCC as well as PLPCC features are used to train

the GMM-HMM- and DNN-HMM-based ASR systems. The WERs

are also tabulated for the cases when the prosodic variables are com-

bined with the MFCC and PLPCC features.

Explored Acoustic WER (in %)

Acoustic Feature
Baseline + Prosody

+ Prosody

Model Kind + HLDA

GMM
MFCC 32.69 25.81 20.63

PLPCC 33.21 26.96 21.35

DNN
MFCC 19.68 16.66 12.73

PLPCC 20.16 17.51 13.28

speech data from 60 child speakers with a total of 5067 words. The

experimental evaluations were performed on wideband speech.

For computing the MFCC/PLPCC feature vectors, the earlier de-

scribed steps were followed with a difference that a 40-channel Mel-

filterbank was used. Furthermore, to boost the robustness towards

speaker variations, feature-space maximum likelihood linear regres-

sion (fMLLR) was employed for normalization. The observation

probabilities for the HMM states were generated using the GMM and

deep neural network (DNN) [33]. Cross-word triphone models con-

sisting of a 3-states HMM with 8 diagonal covariance Gaussian com-

ponents per state were used in the case of GMM-HMM-based ASR

system. Further, decision tree-based state tying was performed with

the maximum number of tied-states (senones) being fixed at 2000.

While learning the DNN-HMM-based ASR system, the fMLLR-

normalized feature vectors were time-spliced once again consider-

ing a context size of 9. The number of hidden layers was chosen as

8 with each layer consisting of 1024 hidden nodes. The nonlinear-

ity in the hidden layers was modeled using the tanh function. The

initial learning rate for training the DNN-HMM parameters was set

at 0.015 which was reduced to 0.002 after 20 epochs and extra 10
epochs of training were employed. The minibatch size for neural net

training was selected as 512.

For decoding the children’s speech test set, a domain-specific

1.5k bigram language model (LM) was employed. This bigram LM

was trained on the transcripts of the speech data in PF-STAR ex-

cluding test set i.e., on the transcripts for the train set only. The

out-of-vocabulary (OOV) rate and perplexity of the employed bi-

gram LM with respect to the children’s test set are 1.20% and 95.8,

respectively. A lexicon of 1, 969 words including the pronunciation

variations was employed.

3.2. Evaluation results

The baseline WERs for children’s test set with respect to the GMM-

HMM- and DNN-HMM-based ASR systems trained using MFCC

and PLPCC features, respectively, are given in Table 3. On com-

bining the considered prosodic variables with either of the explored

acoustic features, significant reductions in WERs are noted similar

to that observed in the case of digit recognition task.

Its a common practice to apply some kind of dimensionality re-

duction and de-correlation technique whenever two different kinds

of feature vectors are concatenated. This helps in reducing the redun-

dancies and retaining relevant information. Moreover, projecting the

data to a lower dimensional subspace is reported to be highly effec-

Table 4: WERs for children’s speech test set with respect to the

DNN-HMM-based ASR systems trained after pooling speech data

from adult as well as child speakers.

Acoustic WER (in %)

Model Baseline + Prosody + Prosody + HLDA

DNN 11.47 9.98 8.82

tive for children’s speech recognition under mismatched setup [34,

35]. Motivated by this, heteroscedastic linear discriminant analysis

(HLDA) was employed for learning a low-rank feature projection

matrix. The 16-dimensional base features obtained by concatenat-

ing the MFCC/PLCC features with prosodic variables were used for

deriving the HLDA matrix. The projection matrix was learned on

the training data and then applied to both the train as well as the test

sets. The base features obtained after low-rank projection were then

spliced in time considering a context size of 9. This was followed by

LDA and MLLT and processing via MVN and fMLLR. The so ob-

tained feature vectors were then used for learning the parameters of

the ASR system. On projecting the data to a lower-dimensional sub-

space, a significant reduction in WER was obtained. The best case

WERs for those studies are given in Table 3. A relative reduction of

around 10 − 12% over the prosody included baseline was obtained

by low-rank feature projection.

In order to further validate the effectiveness of combining the

prosodic features with the acoustic features, another DNN-HMM-

based ASR system was developed by pooling together speech data

from both adult as well as children train sets. The children’s speech

train set derived from PF-STAR consisted of 8.3 hours of speech

data from 122 children. The total number of utterances in this train

set was equal to 856 with a total of 46, 974 words. The developed

ASR system exhibits a lower degree of acoustic/linguistic mismatch

due to the pooling of children’s speech into training. As a result,

the baseline WERs for the developed system (given in Table 4) are

observed to be significantly lower when compared to those obtained

with respect to the ASR system trained on adults’ speech only (see

Table 3). Despite these facts, further reductions in WERs are noted

when the prosodic features are combined with the acoustic features

as given in Table 4. Further reductions in WER are obtained by

projecting the features to lower-dimensional subspace using HLDA.

4. CONCLUSION

In this paper we have studied the effectiveness of combining

prosodic features with two of the dominant acoustic features in

the context of children’s speech recognition using acoustic models

trained on adults’ speech. In such cases, significant degradation

in recognition performance is noted due to a severe mismatch in

the acoustic/linguistic attributes of the speech data from adult and

child speakers. The prosodic variables explored in this paper are

voice-probability, voice-intensity and loudness. On combining the

prosodic variables with MFCC/PLPCC features, significant reduc-

tions in WERs are noted. To further explore the effectiveness of

prosodic features on children’s speech recognition, another ASR

system is developed using speech data from both adult and child

speakers. Even in this case, significant improvements are reported.

In order to further improve the system performance, low-rank fea-

ture projection is also explored. Additive reductions in WERs are

obtained by low-rank feature projection.
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