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ABSTRACT

Accurate on-device wake word detection is crucial to prod-
ucts with far-field voice control such as the Amazon Echo.
It is quite challenging to build a wake word system with
both low False Reject Rate (FRR) and low False Alarm Rate
(FAR) in real scenarios where there are various types of
background speech, music or noise, especially when com-
putational resources on the device is limited. In this paper,
we introduce a two-stage wake word system based on Deep
Neural Network (DNN) acoustic modeling, propose a new
way to model the non-keyword background events using
monophone-based units and present how richer informa-
tion can be extracted from those monophone units for final
wake word detection. Under the new system, we could get
around 16% relative reduction in FRR when fixing the false
alarm level, and about 37% relative reduction in FAR on
the other hand if we maintain the miss rate. For the 2nd
stage classifier itself, it is able to reduce the false alarm rate
relatively by about 67% on top of 1st stage hypothesis with
very few computational resources.

Index Terms— wake word detection, deep neural net-
work, monophone-based units

1. INTRODUCTION

The Amazon Echo is a smart home device using voice-
based user interface. With the Keyword Spotting (KWS)
system running on the device, it is always listening for the
wake word, such as "Alexa". Once the wake word is de-
tected, it can stream audio to cloud and interpret voice
commands. For this application, wake word dectection is
the first important step before interactions through distant
speech recognition [1] and accurate on-device detection is
crucially important for a great customer experience.

There is a rich literature on the topic of keyword spot-
ting in continuous speech. In much of recent work, latency
and computation are not concerns. Offline Large Vocab-
ulary Continuous Speech Recognition (LVCSR) systems
can be used to decode the audio and create transcripts
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or lattices, which can then be used for detecting the key-
word(s) of interest [2] [3] [4] [5]. For online low-latency and
computation-constrained KWS systems, Hidden Markov
Models (HMM) were commonly used [6] [7] [8]. With the
growing success of deep learning in recent years, Gaussian
Mixture Models (GMM) for acoustic modeling under the
HMM framework has been replaced with Deep Neural Net-
work (DNN) in the field of Automatic Speech Recognition
(ASR) [9]. This DNN-HMM hybrid approach using vari-
ous neural network architecture has also been effectively
applied for the wake word application [10][11][12][13][14].
Alternatively, some recent work proposed to build systems
based on a single DNN or convolutional neural network
(CNN) with no HMM involved [15] [16] [17]. RNN/LSTM
based keyword spotting system has been proposed which
can leverage longer temporal context [18] [19] [20] [21]. An
end-to-end trained sequence-to-sequence model was also
proposed recently [22]. There is no solid conclusion on
whether the HMM-based KWS system is better than the
non-HMM based system for real-time single wake word
detection. Non-HMM based KWS system may have better
discriminative capabilities, but it usually requires carefully
designed post-smoothing algorithm to get the final deci-
sion. In this paper, we will focus on single wake word de-
tection on resource-constrained embedded devices using
HMM-based technique.

The wake word detector for experimentation in this pa-
per has been designed to use a DNN-HMM decoder at first,
followed by a light second stage classifier to make the final
decision [23]. The small second stage classifier is meant to
improve the discriminative power of the HMM-based KWS
system without introducing too much computation and
latency. The original system uses simple speech and non-
speech events for background modeling. To better distin-
guish between the wake word and confusable background
audio segments, we propose to incorporate monophone-
based units to model the non-keyword background, and
use those monophone statistics for further classification.

The paper is organized as follows. In section 2, we will
briefly describe how the original two-stage wake word sys-
tem works. In the next section, we will illustrate how we
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Fig. 1: A simplified 1st stage HMM decoding graph for the wake
word "Alexa"

expand to use various phoneme-based events to model the
background and how we can obtain richer features for fi-
nal classification. Finally, we will compare performance of
the baseline and the new system using monophone-based
background modeling technique.

2. BASELINE TWO-STAGE WAKE WORD SYSTEM

2.1. 1st Stage DNN-HMM Decoder

An example 1st stage HMM decoding graph for the key-
word "Alexa" is shown in Figure 1. Note that single-state
HMMs for the phones are shown for simplicity. The fore-
ground HMM consists of wake word phones and several
non-speech frames at the beginning, while the background
HMM consists of a loop over single-state speech and non-
speech events. Viterbi decoding is performed on the HMM
decoding graph using frames of acoustic features computed
from the audio signal, and we are using a Deep Neural Net-
work (DNN) based acoustic model to compute posteriors
of different HMM states. A wake word is hypothesized by
the first stage if the final state of the foreground HMM is
reached and the difference between foreground and back-
ground log-likelihoods during the candidate segment ex-
ceeds a threshold. Various transition and exit penalties in
both the foreground and background HMMs can be tuned
for better accuracy, and a first stage DET curve can thus be
obtained by plotting the lowest achievable FRR at a given
FAR.

2.2. 2nd Stage Classifier

When the first stage log-likelihood ratio exceeds the thresh-
old, the corresponding audio segment X which runs through
is treated as a candidate wake word. Though candidates
triggered from the first stage will be of different durations,
they will be transformed to a feature vector v of dimension
D (D = 67) based on how the candidate segment is aligned
with the foreground HMM and what are the likelihoods for
frames in the candidate given different states. Specifically,
the feature vector v for the candidate wake word X includes
information from both the entire segment and individual
phone segments. Segment-level features include the dura-
tion, keyword likelihood score, normalized likelihood score
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Fig. 2: A simplified 1st stage monophone-based background HMM

and posterior for the keyword. For the phone-level features,
we consider absolute and relative phone duration, phone
log-likelihood, averaged phone/speech confidence scores,
local context features such as left/central/right phone con-
fidence, and entropy based features according to context
phone confidence scores. A second stage classifier is then
trained based on feature vectors extracted from wake word
candidates to make the final decision. We use a small feed-
forward neural network for experimentation here. For the
consideration of detection latency, we are not using RNN
based architecture or attention mechanism to summarize
the information, but it could be tried in the future.

3. NEW WAKE WORD SYSTEM USING
MONOPHONE-BASED BACKGROUND MODELING

3.1. 1st Stage DNN-HMM Decoder with Monophone-
based Background Model

Instead of simply using speech and non-speech back-
ground events, we expand them to various monophones.
With these new units introduced, our new background
HMM becomes a phone-level unigram FST. Figure 2 is a
simplified version of the new background model, since we
are actually using 3-state HMM topology for these back-
ground monophones. We should still be able to use Viterbi
decoding and DNN based acoustic model on the new de-
coding graph, but output targets of the DNN will be ex-
panded accordingly.

3.2. New Feature Engineering for 2nd Stage Classifier

Since we now have a first stage wake word detector with
more HMM states, we can extract richer information from
them for better second verification. The original 67 feature
dimensions illustrated in section 2.2 are still valid. Addi-
tionally, we come up with a new score (M atchScor ep,q )
measuring the degree of match between each candidate’s
wake word phone segment p and every background mono-
phone q , as indicated in equation 1. For each frame X t

within one wake word phone p, we take the maximum
log likelihood among the three states of each background
monophone q , and average these log likelihoods over the
phone duration of p. We need to compute the match score
for each wake word phone p with respect to every back-
ground monophone q . Since the background model is only
learned from non-keyword audio, we would expect lower
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match score between the real wake word phone segment
and background monophones, but higher match score be-
tween phone segment in false wake word hypothesis and
background monophones. In this case, we could be able
to distinguish better between real wake words and confus-
able segments among first stage candidates by introducing
these new features. We are using Nq = 44 monophone units
in the background model, so we could introduce 44 extra
features for each wake word phone segment. Therefore, the
new second stage classifier will end up with using a new
feature vector of dimension 375 (67+7×44). We could do
feature selection to make the model work more efficiently,
but this topic is not discussed under the scope of this paper.

M atchScor ep,q =
1

Durp

Tp+1−1∑
t=Tp

max{log (P (X t |QL
q ,θBG )), log (P (X t |QC

q ,θBG )), log (P (X t |QR
q ,θBG ))}

(1)

p ∈ wake word phones:

{SI LPr ecedi ng , AX _B Alexa ,L Alexa ,E HAlexa ,K Alexa ,S Alexa , AX _E Alexa}

q ∈ background monophones

4. EXPERIMENT RESULTS

4.1. Baseline Setup

The training data used in this work consists of several thou-
sand hours of the real far-field data captured in various
rooms. It contains approximately several hundred thou-
sand subjects. Our development and test set contain tens
of thousands of speech streams uttered by hundreds of
subjects. Both the development and test set have approxi-
mately 30,000 wake word instances. We use a feed-forward
DNN acoustic model in the first stage. The decoding graph
consists of a foreground wake word HMM and a back-
ground speech/non-speech loop HMM. The input acoustic
features to the DNN consists of 31 stacked frames of 20-
dimensional Log mel-Filter-Bank Energies (LFBE) features
(20 frames for left context and 10 frames for right context).
The baseline DNN has 50 output targets corresponding
to phoneme states under wake words, commands (e.g.
"STOP") and speech/non-speech events. The DNN acous-
tic model is at the same time trained to predict the Large Vo-
cabulary Continuous Speech Recognition (LVCSR) targets,
since this is known to improve the accuracy for wake word
detection [10]. A weighted cross-entropy objective function
is used where the loss stream corresponding to the LVCSR
task is weighted by 0.1 while the loss stream corresponding
to the wake word task is weighted by 0.9. Each wake word
candidate segment hypothesized from the first stage is then
transformed to a fixed 67-dimensional feature vector for fi-
nal detection with the second stage classifier using a small
feedforward neural network (NN). The feed-forward DNN
acoustic model is chosen to have 4 hidden layers. Two sizes
for the hidden layer are tried (896, 1024) respectively in the

experiments. The GPU-based distributed DNN trainer de-
scribed in [24] is utilized and the DNN is discriminatively
pre-trained beforehand in a layer-wise manner [25] on a
small subset of the training data.

4.2. Monophone-based System Setup

For the decoding graph in the new wake word system using
monophone-based background, the foreground wake word
HMM keeps the same, but the background HMM changes
to be a phone-level unigram FST as plotted in figure 2 from
section 3.1. Input features to the DNN acoustic model are
still the same but wake word targets at the output layer
are expanded. Non-keyword frames in the training data
are now assigned with specific monophone states instead
of either speech or non-speech label. The new DNN now
has 178 output nodes including both wake word phone
states and monophone states for the wake word task. Each
keyword candidate segment is then transformed to a fixed
375-dimensional feature vector for the 2nd stage NN classi-
fier.

4.3. Experiment Results

4.3.1. 1st Stage HMM Tuning

We first tune the two systems by varying penalties on the
decoding graph. It turns out performance of the two sys-
tems are almost the same at this stage on the dev set. This is
expected since both the baseline and the new system model
foreground and background phones, and the new system is
not using higher order language model but phone-level un-
igram. However, we can extract richer information from the
new system’s first stage decoding results for further classifi-
cation. For both the baseline and the new wake word sys-
tem, we choose a first stage operating point under the sim-
ilar level of recall at around 0.02 and proceed to build the
second stage classifier.

4.3.2. End-to-end Evaluation

DET curves comparing the end-to-end performance of the
two systems are displayed in figure 3. We tried several sizes
for hidden layers of the 2nd stage NN classifier with two
hidden layers. These curves are obtained by sweeping the
final accept threshold in each system. The dashed curve
corresponds to the overall performance of the baseline
wake word system, and the solid curve corresponds to the
overall performance of the new wake word system using
monophone-based background model. We can see the
new system performs generally better than the baseline,
which indicates the additional features derived from the
new wake word system are effectively helpful. When we
vary the size for hidden layers of the 2nd stage NN classifier
(from figure 4a to 3d), we can see some gain when changing
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Fig. 3: End-to-end comparison of the baseline wake word system
and the new system using monophone-based background model-
ing; DET curves on test set; Axis of the false alarm rate is obscured
due to the sensitive nature of this information

from 32 hidden units to 64 hidden units on the 4×896 new
wake word system, but we don’t see much big difference
on other cases. In this case, we will use the 2×64 2nd stage
NN for the following illustration. Table 1 summarizes per-
formance and number of parameters in various wake word
systems. When transiting from the 4×896 speech/non-
speech background based wake word system to the 4×896
monophone background based wake word system, we can
achieve about 16% relative reduce in terms of false reject
rate (FRR) when the false alarm rate (FAR) is fixed at around
2y, and we can on the other hand reduce the FAR by about
37% relatively if we maintain the FRR to be around 0.04
with similar amount of parameters. If we instead transit
to use the 4×1024 speech/non-speech background based
wake word system, it will introduce about 27% percent
more parameters but the gain is much smaller. By further
increasing the first stage DNN size from 4×896 to 4×1024,
the relative reductions in FRR and FAR are quite small by
less than 3%.

Table 1: Summary of different wake word systems

2nd NN: 2x64

FRR
(fix FAR=2y)

FAR
(fix FRR=0.04)

Params

SP/NSP(4×896) 0.051 3.71y 3.02M
SP/NSP(4×1024) 0.050 3.43y 3.84M
monophone(4×896) 0.043 2.35y 3.15M
monophone(4×1024) 0.042 2.31y 3.99M
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Fig. 4: Comparision of the performance with and without 2nd
stage classifier (2×64 NN); DET curves on test set; Axis of the false
alarm rate is obscured due to the sensitive nature of this informa-
tion

4.3.3. Effectiveness of the 2nd stage

Figure 4 compares performance with and without the 2nd
stage classifier on both the baseline and the new system. It
turns out that if we fix the false reject rate to be at 0.04, we
could reduce the FAR by about 45% relatively by deploying
the 2nd stage classifier for the 4×896 speech/non-speech
background based wake word system. The 2nd stage classi-
fier seems to be more effective for the monophone back-
ground based wake word system. We can achieve about
67% relative reduction in FAR using the 2nd stage classifier
for the 4×896 monophone background based wake word
system. Apart from the accuracy gain, computational re-
sources required by the 2nd stage classifier is very cheap
compared to the 1st stage. Its size is more than 100 times
smaller than the 1st stage model and there is no need to run
Viterbi decoding on a restricted graph.

5. CONCLUSION

In this paper, we introduce a two-stage wake word sys-
tem. We propose a different way to model the non-keyword
background audio by expanding the speech/non-speech
events to more specific monophone-based units at the first
stage and we also present how to extract richer features for
a second stage verification. By using the new wake word
system, we can reduce FRR by about 16% relatively when
the false alarm level is maintained, and we are able to re-
duce FAR by about 37% relatively if we maintain the level of
miss rate. We also demonstrate effectiveness of the second
stage classifier itself. It is able to reduce the FAR by about
67% relatively on top of 1st stage hypothesis with very few
computational resources. In the future, it is worthwhile to
apply sequence-discriminative training [26] [27] which is
widely used in the field of LVCSR to train the wake word
acoustic model, since we could now have rich phoneme-
based information in the lattice.
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