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ABSTRACT

We explore the application of deep residual learning and di-
lated convolutions to the keyword spotting task, using the
recently-released Google Speech Commands Dataset as our
benchmark. Our best residual network (ResNet) implemen-
tation significantly outperforms Google’s previous convo-
lutional neural networks in terms of accuracy. By varying
model depth and width, we can achieve compact models that
also outperform previous small-footprint variants. To our
knowledge, we are the first to examine these approaches for
keyword spotting, and our results establish an open-source
state-of-the-art reference to support the development of future
speech-based interfaces.

Index Terms— deep residual networks, keyword spotting

1. INTRODUCTION

The goal of keyword spotting is to detect a relatively small set
of predefined keywords in a stream of user utterances, usually
in the context of an intelligent agent on a mobile phone or a
consumer “smart home” device. Such a capability comple-
ments full automatic speech recognition, which is typically
performed in the cloud. Because cloud-based interpretation
of speech input requires transferring audio recordings from
the user’s device, there are significant privacy implications.
Therefore, on-device keyword spotting has two main uses:
First, recognition of common commands such as “on” and
“off” as well as other frequent words such as “yes” and “no”
can be accomplished directly on the user’s device, thereby
sidestepping any potential privacy concerns. Second, key-
word spotting can be used to detect “command triggers” such
as “hey Siri”, which provide explicit cues for interactions di-
rected at the device. It is additionally desirable that such
models have a small footprint (for example, measured in the
number of model parameters) so they can be deployed on low
power and performance-limited devices.

In recent years, neural networks have been shown to pro-
vide effective solutions to the small-footprint keyword spot-
ting problem. Research typically focuses on a tradeoff be-
tween achieving high detection accuracy and having a small
footprint. Compact models are usually variants derived from

a full model that sacrifice accuracy for a smaller model foot-
print, often via some form of sparsification.

In this work, we focus on convolutional neural networks
(CNNs), a class of models that has been successfully applied
to small-footprint keyword spotting in recent years. In par-
ticular, we explore the use of residual learning techniques and
dilated convolutions. On the recently-released Google Speech
Commands Dataset, which provides a common benchmark
for keyword spotting, our full residual network model outper-
forms Google’s previously-best CNN [1] (95.8% vs. 91.7% in
accuracy). We can tune the depth and width of our networks
to target a desired tradeoff between model footprint and ac-
curacy: one variant is able to achieve accuracy only slightly
below Google’s best CNN with a 50× reduction in model pa-
rameters and an 18× reduction in the number of multiplies
in a feedforward inference pass. This model far outperforms
previous compact CNN variants.

2. RELATED WORK

Deep residual networks (ResNets) [2] represent a ground-
breaking advance in deep learning that has allowed re-
searchers to successfully train deeper networks. They were
first applied to image recognition, where they contributed to a
significant jump in state-of-the-art performance [2]. ResNets
have subsequently been applied to speaker identification [3]
and automatic speech recognition [4, 5]. This paper explores
the application of deep residual learning techniques to the
keyword spotting task.

The application of neural networks to keyword spotting,
of course, is not new. Chen et al. [6] applied a standard multi-
layer perceptron to achieve significant improvements over
previous HMM-based approaches. Sainath and Parada [1]
built on that work and achieved better results using convo-
lutional neural networks (CNNs). They specifically cited
reduced model footprints (for low-power applications) as a
major motivation in moving to CNNs.

Despite more recent work in applying recurrent neural
networks to the keyword spotting task [7, 8], we focus on
the family of CNN models for several reasons. CNNs to-
day remain the standard baseline for small-footprint keyword
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Fig. 1. Our full architecture, with a magnified residual block.

spotting—they have a straightforward architecture, are rel-
atively easy to tune, and have implementations in multiple
deep learning frameworks (at least TensorFlow [9] and Py-
Torch [10]). We are not aware of any publicly-available im-
plementations of recurrent architectures to compare against.
We believe that residual learning techniques form a yet unex-
plored direction for the keyword spotting task, and that our
use of dilated convolutions achieves the same goal that pro-
ponents of recurrent architectures tout, the ability to capture
long(er)-range dependencies.

3. MODEL IMPLEMENTATION

This section describes our base model and its variants. All
code necessary to replicate our experiments has been made
open source in our GitHub repository.1

3.1. Feature Extraction and Input Preprocessing

For feature extraction, we first apply a band-pass filter
of 20Hz/4kHz to the input audio to reduce noise. Forty-
dimensional Mel-Frequency Cepstrum Coefficient (MFCC)
frames are then constructed and stacked using a 30ms win-
dow and a 10ms frame shift. All frames are stacked across a
1s interval to form the two-dimensional input to our models.

3.2. Model Architecture

Our architecture is similar to that of He et al. [2], who pos-
tulated that it may be easier to learn residuals than to learn
the original mapping for deep convolutional neural networks.
They found that additional layers in deep networks cannot

1https://github.com/castorini/honk/
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Fig. 2. Exponentially increasing dilated convolutions; in this
case, k = 1.

type m r n dw dh Par. Mult.
conv 3 3 45 - - 405 1.52M

res × 6 3 3 45 2b
i
3 c 2b

i
3 c 219K 824M

conv 3 3 45 16 16 18.2K 68.6M
bn - - 45 - - - 169K

avg-pool - - 45 - - - 45
softmax - - 12 - - 540 540

Total - - - - - 238K 894M

Table 1. Parameters used for res15, along with the number
of parameters and multiplies.

be merely “tacked on” to shallower nets. Specifically, He
et al. proposed that it may be easier to learn the residual
H(x) = F (x) + x instead of the true mapping F (x), since
it is empirically difficult to learn the identity mapping for F
when the model has unnecessary depth. In residual networks
(ResNets), residuals are expressed via connections between
layers (see Figure 1), where an input x to layer i is added
to the output of some downstream layer i + k, enforcing the
residual definition H(x) = F (x) + x.

Following standard ResNet architectures, our residual
block begins with a bias-free convolution layer with weights
W ∈ R(m×r)×n, where m and r are the width and height,
respectively, and n the number of feature maps. After the con-
volution layer, there are ReLU activation units and—instead
of dropout—a batch normalization [11] layer. In addition
to using residual blocks, we also use a (dw, dh) convolution
dilation [12] to increase the receptive field of the network,
which allows us to consider the one-second input in its en-
tirety using a smaller number of layers. To expand our input
for the residual blocks, which requires inputs and outputs of
equal size throughout, our entire architecture starts with a
convolution layer with weights W ∈ R(m×r)×n. A separate
non-residual convolution layer and batch normalization layer
are further appended to the chain of residual blocks, as shown
in Figure 1 and Table 1.

Our base model, which we refer to as res15, comprises
six such residual blocks and n = 45 feature maps (see Fig-
ure 1). For dilation, as illustrated in Figure 2, an exponential
sizing schedule [12] is used: at layer i, the dilation is dw =
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type m r n Par. Mult.
conv 3 3 19 171 643K

avg-pool 4 3 19 - 6.18K
res × 3 3 3 19 19.5K 5.0M

avg-pool - - 19 - 19
softmax - - 12 228 228

Total - - - 19.9K 5.65M

Table 2. Parameters used for res8-narrow.

type m r n Par. Mult.
conv 3 3 45 405 1.80M

avg-pool 2 2 45 - 45K
res × 12 3 3 45 437K 378M
avg-pool - - 45 - 45
softmax - - 12 540 540

Total - - - 438K 380M

Table 3. Parameters used for res26.

dh = 2b
i
3 c, resulting in a total receptive field of 125×125. As

is standard in ResNet architectures, all output is zero-padded
at each layer and finally average-pooled and fed into a fully-
connected softmax layer. Following previous work, we mea-
sure the “footprint” of a model in terms of two quantities: the
number of parameters in the model and the number of multi-
plies that are required for a full feedforward inference pass.
Our architecture uses roughly 238K parameters and 894M
multiplies (see Table 1 for the exact breakdown).

To derive a compact small-footprint model, one simple
approach is to reduce the depth of the network. We tried cut-
ting the number of residual blocks in half to three, yielding a
model we call res8. Because the footprint of res15 arises
from its width as well as its depth, the compact model adds a
4× 3 average-pooling layer after the first convolutional layer,
reducing the size of the time and frequency dimensions by a
factor of four and three, respectively. Since the average pool-
ing layer sufficiently reduces the input dimension, we did not
use dilated convolutions in this variant.

In the opposite direction, we explored the effects of
deeper models. We constructed a model with double the
number of residual blocks (12) with 26 layers, which we
refer to as res26. To make training tractable, we prepend a
2 × 2 average-pooling layer to the chain of residual blocks.
Dilation is also not used, since the receptive field of 25 3×3
convolution filters is large enough to cover our input size.

In addition to depth, we also varied model width. All
models described above used n = 45 feature maps, but we
also considered variants with n = 19 feature maps, denoted
by -narrow appended to the base model’s name. A detailed
breakdown of the footprint of res8-narrow, our best com-
pact model, is shown in Table 2; the same analysis for our
deepest and widest model, res26, is shown in Table 3.

4. EVALUATION

4.1. Experimental Setup

We evaluated our models using Google’s Speech Commands
Dataset [9], which was released in August 2017 under a
Creative Commons license.2 The dataset contains 65,000
one-second long utterances of 30 short words by thousands of
different people, as well as background noise samples such as
pink noise, white noise, and human-made sounds. The blog
post announcing the data release also references Google’s
TensorFlow implementation of Sainath and Parada’s models,
which provide the basis of our comparisons.

Following Google’s implementation, our task is to dis-
criminate among 12 classes: “yes,” “no,” “up,” “down,” “left,”
“right,” “on,” “off,” “stop,” “go”, unknown, or silence. Our
experiments followed exactly the same procedure as the
TensorFlow reference. The Speech Commands Dataset was
split into training, validation, and test sets, with 80% training,
10% validation, and 10% test. This results in roughly 22,000
examples for training and 2,700 each for validation and test-
ing. For consistency across runs, the SHA1-hashed name of
the audio file from the dataset determines the split.

To generate training data, we followed Google’s pre-
processing procedure by adding background noise to each
sample with a probability of 0.8 at every epoch, where the
noise is chosen randomly from the background noises pro-
vided in the dataset. Our implementation also performs a
random time-shift of Y milliseconds before transforming the
audio into MFCCs, where Y ∼ UNIFORM[−100, 100]. In or-
der to accelerate the training process, all preprocessed inputs
are cached for reuse across different training epochs. At each
epoch, 30% of the cache is evicted.

Accuracy is our main metric of quality, which is sim-
ply measured as the fraction of classification decisions that
are correct. For each instance, the model outputs its most
likely prediction, and is not given the option of “don’t know”.
We also plot receiver operating characteristic (ROC) curves,
where the x and y axes show false alarm rate (FAR) and
false reject rate (FRR), respectively. For a given sensitiv-
ity threshold—defined as the minimum probability at which
a class is considered positive during evaluation—FAR and
FRR represent the probabilities of obtaining false positives
and false negatives, respectively. By sweeping the sensitiv-
ity interval [0.0, 1.0], curves for each of the keywords are
computed and then averaged vertically to produce the over-
all curve for a particular model. Curves with less area under
the curve (AUC) are better.

4.2. Model Training

Mirroring the ResNet paper [2], we used stochastic gradient
descent with a momentum of 0.9 and a starting learning rate

2https://research.googleblog.com/2017/08/
launching-speech-commands-dataset.html
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Model Test accuracy Par. Mult.
trad-fpool3 90.5% ± 0.297 1.37M 125M
tpool2 91.7% ± 0.344 1.09M 103M
one-stride1 77.9% ± 0.715 954K 5.76M
res15 95.8% ± 0.484 238K 894M
res15-narrow 94.0% ± 0.516 42.6K 160M
res26 95.2% ± 0.184 438K 380M
res26-narrow 93.3% ± 0.377 78.4K 68.5M
res8 94.1% ± 0.351 110K 30M
res8-narrow 90.1% ± 0.976 19.9K 5.65M

Table 4. Test accuracy of each model with 95% confidence
intervals (across five trials), as well as footprint size in terms
of number of parameters and multiplies.

of 0.1, which is multiplied by 0.1 on plateaus. We also ex-
perimented with Nesterov momentum, but we found slightly
decreased learning performance in terms of cross entropy loss
and test accuracy. We used a mini-batch size of 64 and L2

weight decay of 10−5. Our models were trained for a total of
26 epochs, resulting in roughly 9,000 training steps.

4.3. Results

Since our own networks are implemented in PyTorch, we
used our PyTorch reimplementations of Sainath and Parada’s
models as a point of comparison. We have previously con-
firmed that our PyTorch implementation achieves the same
accuracy as the original TensorFlow reference [10]. Our
ResNet models are compared against three CNN variants
proposed by Sainath and Parada: trad-fpool3, which is
their base model; tpool2, the most accurate variant of those
they explored; and one-stride1, their best compact vari-
ant. The accuracies of these models are shown in Table 4,
which also shows the 95% confidence intervals from five
different optimization trials with different random seeds. The
table provides the number of model parameters as well as
the number of multiplies in an inference pass. We see that
tpool2 is indeed the best performing model, slightly better
than trad-fpool3. The one-stride1 model substan-
tially reduces the model footprint, but this comes at a steep
price in terms of accuracy.

The performance of our ResNet variants is also shown in
Table 4. Our base res15 model achieves significantly better
accuracy than any of the previous Google CNNs (the con-
fidence intervals do not overlap). This model requires fewer
parameters, but more multiplies, however. The “narrow” vari-
ant of res15with fewer feature maps sacrifices accuracy, but
remains significantly better than the Google CNNs (although
it still uses ∼30% more multiplies).

Looking at our compact res8 architecture, we see that
the “wide” version strictly dominates all the Google models—
it achieves significantly better accuracy with a smaller foot-
print. The “narrow” variant reduces the footprint even more,

Fig. 3. ROC curves for different models.

albeit with a small degradation in performance compared to
tpool2, but requires 50× fewer model parameters and 18×
fewer multiplies. Both models are far superior to Google’s
compact variant, one-stride1.

Turning our attention to the deeper variants, we see that
res26 has lower accuracy than res15, suggesting that we
have overstepped the network depth for which we can prop-
erly optimize model parameters. Comparing the narrow vs.
wide variants overall, it appears that width (the number of
feature maps) has a larger impact on accuracy than depth.

We plot the ROC curves of selected models in Fig-
ure 3, comparing the two competitive baselines to res8,
res8-narrow, and res15. The remaining models were
less interesting and thus omitted for clarity. These curves are
consistent with the accuracy results presented in Table 4, and
we see that res15 dominates the other models in perfor-
mance at all operating points.

5. CONCLUSIONS AND FUTURE WORK

This paper describes the application of deep residual learn-
ing and dilated convolutions to the keyword spotting problem.
Our work is enabled by the recent release of Google’s Speech
Commands Dataset, which provides a common benchmark
for this task. Previously, related work was mostly incompa-
rable because papers relied on private datasets. Our work es-
tablishes new, state-of-the-art, open-source reference models
on this dataset that we encourage others to build on.

For future work, we plan to compare our CNN-based ap-
proaches with an emerging family of models based on recur-
rent architectures. We have not undertaken such a study be-
cause there do not appear to be publicly-available reference
implementations of such models, and the lack of a common
benchmark makes comparisons difficult. The latter problem
has been addressed, and it would be interesting to see how
recurrent neural networks stack up against our approach.
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