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ABSTRACT

In this work, we present a simple deep neural network (DNN)-based
regression approach to artificial speech bandwidth extension (ABE)
in the frequency domain for estimating missing speech components
in the range 4 . . . 7 kHz. The upper band (UB) spectral magnitudes
are found by first estimating the UB cepstrum by means of a DNN
regression and subsequent conversion to the spectral domain, leading
to a more efficient and generalizing model training rather than esti-
mating highly redundant UB magnitudes directly. As second novelty
the phase information for the estimated upper band spectral magni-
tudes is generated by spectrally shifting the NB phase. Apart from
framing, this very simple approach does not introduce additional al-
gorithmic delay. A cross-database and cross-language task is defined
for training and evaluation of the ABE framework. In a subjective
comparison category rating test, the proposed ABE solution signif-
icantly outperforms the competing ABE baseline and was found to
improve NB speech quality by 0.80 CMOS points, while the compu-
tation time is reduced to about 3 % compared to the ABE baseline.

Index Terms— artificial speech bandwidth extension, speech
enhancement, machine learning, deep neural network, regression

1. INTRODUCTION

Artificial speech bandwidth extension (ABE) is a speech enhance-
ment approach, typically located in the downlink path of a telephone
call. ABE algorithms aim to enhance narrowband (NB) speech sig-
nals, i.e., signals containing only frequency components up to 4 kHz.
Compared to wideband (WB) speech signals, NB calls miss acous-
tic components in the upper band (UB), i.e., the frequency range
4 kHz < f < 8 kHz, and thus limited speech quality and intelligibil-
ity is resulting. Consequently, recovering the UB has high potential
for enhancing the speech quality of a NB telephony call. In several
works, the improved subjective speech intelligibility and quality of
additional acoustic bandwidth either by employment of WB speech
codecs or an ABE solution was shown [1, 2, 3, 4]. Using a WB
speech codec and thus having a high-quality phone call often fails
for practical reasons, e.g., if one of the participants of a call is not
located in a WB-capable cell or if a call is conducted from one op-
erator to another. In all of these cases, ABE can serve as safety net
to keep the speech quality as high as possible, even if a WB call is
not available. In the age of an increased number of WB calls this
is expected to be the major role of ABE (at least) in the next two
decades.

The task of extending speech signals is often solved by means
of the source-filter model for speech production. In more detail,
an UB residual signal as well as an UB envelope needs to be esti-
mated. While the UB residual is often found by simple application
of spectral folding [5], the estimation of an UB spectral envelope is

a challenging task. One approach is to classify among pretrained
UB spectral codebook entries, representing UB spectral envelopes.
In [6, 7], classification among the pretrained entries was done by
finding the lowest distance to codebook entries of NB speech sig-
nals, which directly map to the UB codebook entries. Furthermore,
Gaussian mixture models (GMMs) have been employed in [8, 9].
Additionally, considering behavior over time, hidden Markov mod-
els (HMMs) with GMMs as acoustic models were employed in [10,
11, 12, 13, 14]. Supporting the HMM/GMM statistical model, Bauer
et al. additionally employed neural networks (NNs) [15]. In [16], an
NN is used to estimate parameters for UB envelope shaping. In the
recent past, deep neural networks (DNNs) have been employed as
classifiers for pretrained UB envelopes in [17] or for directly esti-
mating (by regression) the UB envelope in [18, 19, 20, 21].

Opposed to source-filter model-based ABE, the UB can be es-
timated by finding UB magnitudes and UB phases in the frequency
domain, followed by a transformation back to the time domain. In
[22] sum-product networks estimate a log spectrogram, while the
phase is generated via an iterative algorithm. Furthermore, in [23]
the UB log-power spectrum is directly estimated using a DNN, while
the UB phase is obtained via inverse mirroring of the phase from the
NB signal. Obtaining the phase also from the NB signal, in [24] UB
magnitudes are estimated by a recurrent NN with long short-term
memory (LSTM) cells.

Estimating high-dimensional UB spectral magnitudes leads to
a psychoacoustically highly redundant estimation output and there-
fore prevents an efficient and generalizable statistical model train-
ing. Accordingly, in this paper, we estimate the UB spectrum by
first estimating a cepstral representation which is of low dimension
and thus contains less redundancy. Consequently, the proposed ap-
proach is simpler in terms of algorithmic complexity. Additionally,
no lookahead is employed, thus the solution extends the input signal
instantaneously on a frame basis. Special focus lies on practical em-
ployment of the presented ABE solution, therefore we trained and
tested the solution using different speech databases. Furthermore,
the solution is trained on English speech data, while speech qual-
ity assessment was conducted including also German speech data.
The efficiency and performance of our very simple ABE approach is
finally proven by the results of a subjective listening test.

The paper is structured as follows: In Sec. 2 a detailed descrip-
tion of the employed framework is given. Special attention lies
on the description of UB magnitude and phase estimation. Sub-
sequently, in Sec. 3 we explain the experimental setup, including
speech data sets, preprocessing steps, and an ABE baseline system
which we use for comparison. Instrumental assessment of the new
simple ABE approach is conducted in Sec. 4, and finally we present
the results of a subjective comparison category rating (CCR) listen-
ing test.
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Fig. 1. Block diagram of the proposed ABE algorithm. Sample index n refers to 16 kHz sampling rate.

2. ARTIFICIAL BANDWIDTH EXTENSION

In Fig. 1 a block diagram presenting the ABE framework is depicted.
We assume that the input is a speech signal sNB(n), with n being
the sample index for a sampling frequency of fs = 16 kHz, how-
ever, containing only energy in the lower band (or NB). This is a
typical scenario in modern signal processing paths in the downlink,
which are increasingly able to transmit 16 kHz sampled speech sig-
nals, even if somewhere in the transmission path only a NB coding
has been used. The algorithm outputs an artificially-extended speech
signal ŝWB(n), containing an estimated UB.

2.1. Framework

Following the block diagram in Fig. 1, the input NB speech signal
sNB(n) is framed to a length of L = 256 samples (i.e., 16 ms). Sub-
sequently, the speech frames sNB

` (n), with ` being the frame index,
are subject to a periodic square root Hann window and subsequent
discrete Fourier transform (DFT) of size K=256=L, with k being
the frequency bin index. The frame shift is L/2=128 samples (i.e.,
8 ms). The set of indices representing the NB speech components is
KNB = {k|0 ≤ k ≤ K

4
}. Accordingly, the UB is represented by set

KUB ={k|K
4
+ 1 ≤ k ≤ K

2
}. The resulting spectrum SNB

w,`(k) ∈ C
is used as input for the statistical model which estimates the UB

magnitude |SUB
w,`(k)|
∧

(Sec. 2.2) and to provide the NB speech com-
ponents for the subsequent WB spectrum assembly. Once the UB
magnitudes and phases have been estimated, the WB spectrum is
assembled according to

ŜWB
w,`(k) =

{
SNB
w,`(k) for k ∈ KNB

|SUB
w,`(k)|
∧

· exp
(
j · φ̂UB

` (k)
)

for k ∈ KUB.
(1)

Please note that the UB phase estimate φ̂UB
` (k) is obtained from

the spectrum SNB
` (k) ∈ C, i.e., the DFT of the input speech frame

which was not subject to windowing (i.e., rectangular windowing).
Estimation of a suitable phase is described in Sec. 2.3.

By means of the inverse discrete Fourier transform (IDFT), the
estimated WB spectrum ŜWB

w,`(k) is transformed back into the time
domain. After windowing with a periodic square root Hann window,
overlap-add (OLA) provides the bandwidth-extended output signal
ŝWB(n). At this point in processing, the input NB signal was multi-
plied twice with a square root Hann window. In addition, the DNN
was trained using targets which were also calculated on square root
Hann windowed spectra. Consequently the required synthesis prop-
erties for a 50% OLA structure are fulfilled. For result reporting, we
will refer to this proposed approach as ABE-Simple.

2.2. UB Magnitude Estimation

A fully connected feedforward DNN [25] is used for UB spectral
magnitude estimation. The input feature vector is defined as

x` =
(
ln|SNB

w,`(k)|
) ∣∣

k∈KNB , (2)

i.e., the log-spectral magnitude information of the NB speech signal.
The DNN works in regression mode and outputs a 20-dimensional
cepstral vector ĉUB

` as estimates for the UB magnitudes. The network
parameters required for this processing were found in a preliminary
training phase, which will be described in more detail in Sec. 3.2. To
obtain a spectral representation of the UB magnitudes, the estimated
cepstral vector is converted by means of the inverse discrete cosine
transform (IDCT) [26, 27], as follows:(

ln|S′
w,`(k

′)|
) ∣∣

k′∈K′ = IDCT{ĉUB
` }, (3)

with k′ ∈ K′ = {0, 1, . . . , K
4
−1} being the frequency bin index of

the critically downsampled UB spectrum. Finally, the estimated UB
spectral magnitudes are calculated:

|SUB
w,`(k)|
∧

:=

{
0 for k ∈ KNB

exp
(
ln|S′

w,`(k − K/4− 1)|
)

for k ∈ KUB.
(4)

2.3. UB Phase Estimation

To obtain the estimated UB phases, we simply copy the phase from
the NB spectrum to the UB, following

φ̂UB
` (k + K/4) := arg

(
SNB
` (k)

)
, k ∈ {1, 2, . . . ,K/4}, (5)

with arg () returning the phase angle of the complex-valued spec-
trum SNB

` (k). Although this estimate can be considered as very
coarse, it maintains a plausible evolvement of phase, both over time
and frequency, which will turn out to provide good quality.

3. EXPERIMENTAL SETUP

3.1. Speech Data and Preprocessing

The definition of data sets and preprocessing steps follow precisely
[21]: The speech data used in this work is taken from the TIMIT
database [28], Speechdat-Car US (SDC) database [29], and NTT
database [30]. The data from TIMIT and SDC was mixed and used
to create a training and validation set for DNN training (c.f. Sec.
3.2). For instrumental and subjective performance evaluation of the
proposed ABE solution, we take the German and American English
parts of the NTT database as test set. Consequently, the DNN uses
5.8 h and 2.4 h of speech material for training and validation, respec-
tively. The test set contains 0.4 h of speech data.

We preprocessed the speech data following [31]: For the NB
condition, the available WB speech signals are MSIN-filtered [32],
decimated to 8 kHz, coded by the adaptive multirate (AMR) speech
codec at bitrate 12.2 kbps [33] and finally decoded. Before and after
coding, the speech signal was subject to a 16 to 13 bit conversion.
Finally, the NB condition is resampled to 16 kHz and thus serves as
input signal to the ABE framework, referred to as AMR. The WB
condition is obtained by P.341-filtering [34] of the 16 kHz speech

5470



signal provided by the speech databases. This intermediate result
serves as input for generating training targets and as reference signal
for all employed instrumental metrics. For comparison in the instru-
mental and subjective evaluation, we further code and decode the
speech signal using the AMR WB codec [35] at a bitrate of 12.65
kbps, referred to as AMR-WB.

3.2. DNN Training for UB Magnitude Estimation

For DNN training, the features are generated as described in Sec. 2.2.
For deriving time-aligned targets, the ground-truth WB speech sig-
nal is framed, windowed by a square root Hann window, and subse-
quently transformed into the frequency domain leading to WB spec-
tra SWB

w,`(k) (following exactly the steps as described in Sec. 2.1 for
the 16 kHz-sampled NB speech signal). Subsequently, the targets
are derived by converting the WB spectra to the cepstral domain by
means of the K-point discrete cosine transform (DCT) [26, 27], fol-
lowing

cUB
` = DCT

{(
ln|SWB

w,`(k)|
) ∣∣

k∈KUB

}
. (6)

As targets, we use only the first 20 cepstral coefficients, since only
the UB envelope is considered as perceptually relevant for ABE. The
DNN is trained with a topology of three hidden layers, each having
256 units. Rectified linear units (ReLUs) are used as activation func-
tion in the units [25].

3.3. ABE Baseline Approach

As baseline for our investigations, we employ Bauer’s ABE ap-
proach presented in [15], which was retrained on the exact same
speech data sets as the proposed ABE-Simple approach. The base-
line approach is based on a source-filter model employing a hidden
Markov model with Gaussian mixture model as acoustic model
and additional two neural networks, which support the estimation
process by contributing detailed information on the UB energy, es-
pecially at fricative sounds, such as /s/ or /z/. The baseline approach
evolved from years of research and had been found to significantly
improve the speech quality of the incoming NB speech signal [15].
We will refer to this ABE approach as ABE-Baseline.

3.4. Measures for Instrumental Evaluation

To judge the reconstruction of the UB on signal level, we employ
the logarithmic spectral distance (LSD) implemented after [36]. The
LSD is calculated in the spectral domain for a set of frequency bins
K, following

LSD`=

√√√√ 1

|K|
∑
k∈K

[
10log10

(
|S`(k)|2

|Ŝ`(k)|2

)]2
[dB], (7)

with S`(k) and Ŝ`(k) being the short-term spectra of the reference
and the degraded speech signal as computed from the time domain
signals, respectively, and |.| being the number of elements in the
set. Please note that the spectra for LSD calculation are computed
with a frame size of L = 256 samples, plus 50% look-back and
lookahead, and were windowed using a Hamming window of length
K′=512. The reported LSD values are the result of first averaging
over all frames of a speech signal and subsequent averaging over all
speech files. Please note that we consider only frames with voice
present for calculating the LSD measure. We will report a WB LSD
score, where we consider all frequencies up to 7 kHz and an UB LSD
score, where only the speech components between 4 and 7 kHz are
being accounted for. Please note that the LSD measure in principle is

Condition under test MOS-LQO WB LSD UB LSD

AMR 2.99 17.99 25.41

ABE-Baseline 2.62 10.48 12.61
ABE-Simple 2.83 9.44 11.16
ABE-Simple w/ oracle phase 2.99 8.02 8.27

AMR-WB 3.54 7.35 8.38

Table 1. Instrumental results; LSD values in [dB].

phase-insensitive, however, the phase estimation (5) in this work can
lead to constructive or destructive interference in the OLA process-
ing block, thus the LSD can evaluate phase estimation approaches,
even though magnitude spectra are compared in (7).

In addition, we instrumentally assess the speech quality of the
ABE-processed speech signal using WB-PESQ [37] in terms of the
mean opinion score listening quality objective (MOS-LQO). Both,
LSD and WB-PESQ use the respective WB speech signals in direct
condition as reference.

4. INSTRUMENTAL QUALITY ASSESSMENT

The results for instrumentally assessing the ABE-processed speech
signals are given in Tab. 1. Regarding the predicted speech quality
in terms of MOS-LQO, AMR-WB obviously outperforms AMR by
0.55 MOS-LQO points. This small difference is due to the fact that
in this case WB-PESQ is also used to score the narrowband AMR
files sampled at 16 kHz. Regarding the ABE approaches, we found
the lowest MOS-LQO values at the ABE-Baseline condition with
2.62, while the proposed ABE-Simple approach obtains a higher
score of 2.83. Using the oracle phase during ABE processing, ABE-
Simple scores 2.99 MOS-LQO points, which is therefore rated by
WB-PESQ to have the same speech quality as AMR. This prediction
of speech quality given by WB-PESQ is inconsistent with the result
of preliminary informal subjective tests, conducted in our facilities.
This is in line with earlier observations [1, 4, 2] which led to the
proposal of the QABE measure [38] as instrumental quality index
for ABE systems. In order not to use our own measure for our own
approach here, we decided to conduct a subjective listening test in
Sec. 5.

The WB LSD measure, on the other hand, attests a huge im-
provement for the ABE-Baseline condition by 7.51 dB, when com-
paring to AMR. Considering ABE-Simple, the improvement is even
higher with 8.55 dB. Compared to the AMR-WB condition, ABE-
Baseline is 3.13 dB behind, while ABE-Simple is deviating only by
2.09 dB.

Looking only at the UB LSD, ABE-Simple improves the AMR
condition by an impressive 14.25 dB, thus also outperforming ABE-
Baseline. If we use the oracle UB phase information, extracted
from the uncoded WB speech signal, the LSD gets as low as 8.27
dB, which is even lower than the UB LSD of the AMR-WB condi-
tion. This indicates still potential for further improvement by a better
phase estimation method.

Finally, we timed both approaches1 during processing of the
test set. Relative to the ABE-Baseline approach the ABE-Simple
method consumes about 3 % of the computational power. The enor-
mous reduction of complexity in the proposed approach comes along
with an improvement of more than 1 dB regarding the WB LSD met-
ric, compared to ABE-Baseline.

1Both approaches have been implemented in MATLAB and were exe-
cuted on a typical PC platform. File operations were not considered.

5471



CCR Condition CMOS CI95

AMR vs. AMR-WB 1.63 [1.48; 1.88]
ABE-Baseline vs. AMR-WB 1.28 [1.11; 1.44]
ABE-Simple vs. AMR-WB 1.03 [0.86; 1.20]
ABE-Baseline vs. ABE-Simple 0.15 [0.01; 0.29]
AMR vs. ABE-Baseline 0.63 [0.39; 0.87]
AMR vs. ABE-Simple 0.80 [0.55; 1.05]

Table 2. Subjective speech quality assessment: Results from a
CCR test, evaluating the ABE-Baseline baseline and the new ABE-
Simple approach vs. NB- and WB-coded speech signals.

5. SUBJECTIVE SPEECH QUALITY ASSESSMENT

In a semi-formal CCR listening test [39, Annex E], where two condi-
tions are compared to each other at once and rated on the comparison
MOS (CMOS) scale from -3 (much worse) to +3 (much better), we
evaluate four conditions:
• AMR: Coded NB speech, processed as described in Sec. 3.1
• AMR-WB: Coded WB speech, processed as described in

Sec. 3.1
• ABE-Baseline: Baseline ABE approach as referred to in Sec.

3.3, with AMR speech data input
• ABE-Simple: Newly proposed ABE solution as described in

Sec. 2.1, with AMR speech data input
In total, 12 German native speakers without known hearing impair-
ment judged the conditions under test. Each condition was sub-
ject to P.341-conformant bandpass-filtering to a frequency range of
0.2 . . . 7 kHz [34, 16, 15], active speech level scaling to −26 dBov
[40], and final conversion to 48 kHz sampling rate. The sentences
under test were taken from the German part of the NTT database,
thus they were also included in the test data set for instrumental as-
sessment. Speech files of two female and two male speakers were
chosen, each speaker providing 4 sentences for further processing
using the conditions under test.

Participants listened to the signals under test in diotic fashion
using two PCs with RME Fireface 400 sound cards using AKG
K-271 MKII headphones. A preliminary familiarization test was
conducted, including all test conditions. Subsequently, the subjects
judged 36 speech file pairs, in both orders, leading to 72 comparisons
in total. The presentation order was randomized and split into two
sets of comparisons, balanced over speakers and conditions.

The results of the listening test are presented in Tab. 2 in terms
of CMOS and a respective 95% confidence interval (CI95) for each
of the CCR conditions. First of all, the AMR-WB condition was
found to improve the speech quality compared to AMR by 1.63
CMOS points. Furthermore, compared to AMR-WB, the ABE-
Baseline approach is found to be 1.28 CMOS points worse, while
ABE-Simple was found to be only 1.03 CMOS points worse. This
already indicates a superior performance of the new ABE solution
w.r.t. the baseline approach.

In a direct comparison, the new ABE-Simple approach outper-
forms the baseline by 0.15 CMOS points, with a confidence interval
starting above zero, thus just proving significance of the result.

Furthermore, the baseline approach was confirmed to signifi-
cantly outperform AMR by 0.63 CMOS points. An even higher gain
in speech quality could be shown by our new ABE-Simple with 0.80
CMOS points, compared to the underlying NB condition. Consid-
ering also the first CCR condition, comparing NB to WB, we con-
clude that the ABE-Simple approach bridges about 50% of the gap

between NB and WB speech quality, achieved by a quite simple yet
effective DNN-based approach.

6. CONCLUSIONS

In this paper we presented a simple approach to artificial speech
bandwidth extension (ABE). The approach is characterized by a low-
complexity deep neural network-based estimation scheme of upper
band (UB) spectral magnitudes and a simple yet effective UB phase
estimation which reuses the phase information obtained from the in-
coming NB signal. In terms of UB log-spectral distance, the pro-
posed ABE framework improves the underlying NB speech condi-
tion by 14.25 dB, therefore also outperforming the ABE baseline
system. This result was confirmed in a subjective comparison cate-
gory rating test which revealed an improvement in terms of speech
quality by 0.80 CMOS points compared to NB. Compared to the
baseline, the proposed approach only takes about 3 % of the compu-
tational power, indicating a huge complexity reduction.

Instrumental assessment of the ABE solutions suggests that fur-
ther quality improvement could be achieved by improving the UB
phase estimation.
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