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ABSTRACT

The estimation of the noise power spectral density (PSD) forms
a critical component of several existing single channel speech en-
hancement systems. In this paper, we evaluate one new and some of
the existing and commonly used noise PSD estimation algorithms in
terms of the spectral estimation accuracy and the enhancement per-
formance for different commonly encountered background noises,
which are stationary and non-stationary in nature. The evaluated al-
gorithms include the Minimum Statistics, MMSE, IMCRA methods
and a new model-based method.

Index Terms— speech enhancement, noise PSD estimation, au-
toregressive models

1. INTRODUCTION

Speech enhancement algorithms have a wide range of applications
such as in digital hearing aids, speech recognition systems, mobile
communications, etc [1], where the desired speech is degraded by
acoustic background noise. These algorithms can be broadly cate-
gorised into single and multi channel algorithms. In this paper, we
are only concerned with the former class of algorithms. The sin-
gle channel speech enhancement algorithms must generally incor-
porate some assumptions to remove the background noise from the
desired signal. For example, the Wiener filter assumes the second-
order statistics of the speech/noise signal to be known. In practical
scenarios, these statistics must be estimated from noisy observations.
Thus, a very critical part present in most of the single channel speech
enhancement methods is the estimation of the noise PSD [2, 3]. A
significant amount of work has been done in the past decades to solve
this problem.

In this paper, we evaluate some of the well known noise PSD
estimation algorithms along with a new model-based approach [4].
Previously, an evaluation of noise PSD estimators was carried out
in [5]. This study compared some of the existing noise PSD esti-
mators in terms of the spectral estimation accuracy. In this study,
we also evaluate the noise PSD estimators in terms of its enhance-
ment capabilities in some of the typically encountered background
noises. The estimation of noise PSD is not a trivial task especially
in the case of non-stationary noises. In such scenarios, the noise
PSD estimate has to be updated as rapidly as possible. An under-
estimation or over-estimation of the noise PSD can lead to residual
noise or speech distortion. In the current study, we evaluate dif-
ferent noise PSD estimation algorithms for different types of com-
monly encountered background noise, which are stationary and non-
stationary in nature. The well-known algorithms that we have eval-
uated in this paper are Minimum Statistics (MS) method [6], Im-
proved minima controlled recursive averaging (IMCRA) [7] method
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and minimum mean squared error (MMSE) based estimation [§8]. In
addition to these algorithms, we also evaluate a new model-based ap-
proach for estimating the noise PSD. A detailed description regard-
ing this method can be found in [4]. Here we focus on evaluating its
performance. This method uses a priori information regarding the
speech and noise spectral shapes in the form of autoregressive (AR)
parameters stored in trained speech and noise codebooks.

The remainder of this paper will be organised as follows. Sec-
tion 2 gives a brief introduction to the noise PSD estimation problem
and an overview of the model-based method for estimating the noise
PSD. A brief overview of the compared algorithms is given in Sec-
tion 3. The experiments used in the evaluation of the algorithms will
be explained in section 4 followed by the results and conclusion in
Sections 5 and 6 respectively.

2. MODEL BASED APPROACH FOR ESTIMATING THE
NOISE PSD

This section formulates the noise PSD estimation problem and gives
a brief overview of the model-based approach for estimating the
noise PSD. We refer the interested readers to a companion paper
[4] (for further details). It is assumed here that /N samples of noisy
signal are observed as

y=ste, (O]
where y € RV, s € RY, and e € RY are the noisy speech, the
clean speech, and the noise, respectively. The basic task here is to
estimate the noise PSD which is typically defined as [9]
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where E is the expectation operator and E(w) = f(w)e is the
DFT of the noise with f(w) = [1  exp(jw) exp(jw(N — IN]T.
The conditional expectation in (2) is the second moment of the den-
sity p(E(w)|y) which leads to (2) be rewritten in terms of p(e|y)
as
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To compute the posterior p(e|y), statistical models denoted as
{ M. }f_;, are used for explaining the generation of data. These
models can be incorporated into (3) as,
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where {p(M|y) }1—, denote the model probabilities, which ensure
that models explaining the data well are given more weight in com-
parison to other models. The models that have been used are autore-
gressive (AR) models for speech and noise denoted by [10, 11]

p(s‘aika) :N(OankRs(ak)) (6)
plelo k, My) = N (0,07 . Re(b)) ©)

where o7, 02, Rs(ax), Re(by), ar, and by, are the excitation
noise variance, the normalised covariance matrices, and the AR-
parameters of the speech and the noise, respectively. It can be shown
under certain assumptions that the normalised covariance matrix cor-
responding to speech and noise can be diagonalised by the DFT ma-
trix [12, 11]. The excitation variances are treated as unknown ran-
dom variables with the priors,

p(02 k| M) = Inv-G (v i, Bs.r) ®)
p(02 1| M) = Inv-G(ae i, Bek)- ©9)

As seen from (4) and (5), the posteriori model probabilities and the
second moment of the posterior needs to be computed to get the final
noise PSD estimate. As there is no closed form solution to obtain
this, a variational Bayesian framework [13, 14] is used to produce
an analytical approximation of the full joint posterior used in (4) as

p(evazk70-e2,k|yaMk)p(Mkly) ~
q(ely, My)q(ody, 0l ly, Mi)g(Myly) . (10)

Since the posterior factor g(e|y, My) is a normal distribution, its
second moment and the posterior model probabilities g(M|y) is
substituted in (5) to get the final noise PSD estimate. More details
regarding the derivation of this method can be found in http://
tinyurl.com/jknvbn.

3. OVERVIEW OF THE EXISTING ALGORITHMS

In this section, we will give a brief overview of the existing noise
PSD estimation algorithms that have been evaluated in this paper.

3.1. Minimum Statistics

This method [6] tracks the minima of the smoothed noisy spectrum
for each frequency component. The method is based on the obser-
vation that the speech and noise component are statistically inde-
pendent and that the power of the noisy signal often goes down to
the power of the noise signal. The smoothed noisy spectrum is cal-
culated using a recursive smoothing equation. Since this method is
based on computing the minimum of the smoothed noisy spectrum
over a moving window, the noise PSD estimate is necessarily biased.
This is overcome in [6] to some extent by using a bias compensation
factor in time and frequency.

3.2. IMCRA

In this method [7], the noise PSD estimate is obtained by a recur-
sive averaging of the noisy spectral values using a time varying fre-
quency dependent smoothing parameter, that is adjusted according
to the speech presence probability (SPP) for each frequency com-
ponent. The a priori SPP are calculated in this method after two
iterations of smoothing and minima tracking. The final SPP (used
for the recursive averaging) is then computed using the a priori SPP
and the estimated a priori SNR.

3.3. MMSE

This method [8] derives an MMSE estimator of the noise PSD coeffi-
cients. Here, the speech and noise spectral coefficients are modelled
as normally distributed random variables that are independent with
each other. The first step involves the computation of the conditional
expectation of the noise periodogram given the noisy signal which
involves a weighted combination of noise PSD estimate from the
previous frame and the noisy periodogram from the current frame.
The final noise PSD estimate is then obtained by a recursive averag-
ing of the estimated noise periodogram.

4. EXPERIMENTS

We will now describe the experiments that have been carried out
to evaluate the four noise PSD estimation algorithms. Section 4.1
describes the parameters that have been used for implementing the
different noise PSD estimation algorithms. Sections 4.2 and 4.3
explains the experiments done to evaluate the estimation accuracy
and the enhancement capabilities of the noise PSD estimation algo-
rithms, respectively.

4.1. Implementation Details

We have evaluated a total of four algorithms: MS, IMCRA, MMSE
and the new model based approach. The test signals used for evalu-
ation were taken from the EUROM database [15]. The clean speech
signals were then degraded by 5 types of typically encountered back-
ground noise: babble, street, station, exhibition and restaurant from
the NOIZEUS database [16]. The model based approach for esti-
mating the noise PSD explained in Section 2 requires the speech
and noise codebooks to be trained offline. For the experiments we
have trained a speech codebook of 64 entries and a noise codebook
of 12 entries. The codebooks were trained using a variation of the
LBG algorithm [17]. The training data used for creating the speech
codebook consisted of audio samples from the EUROM database.
It should be noted that we have trained a codebook that is indepen-
dent of the speaker. The data used for generating the noise code-
book consisted of noise files from the NOIZEUS database. Differ-
ent codebooks were trained for different types of noise, which were
then appended together to form a larger codebook. The noise code-
book had a size of 16 entries, which consisted of 4 entries each for
babble, restaurant and exhibition and 2 entries each for street and
station. It should be noted that, while testing for a particular noise
scenario, the noise codebook entries corresponding to that scenario
is NOT used for the estimation of noise PSD. The codebooks as well
as MATLAB code for generating the codebooks will be available at
http://tinyurl.com/jknvbn. The AR order for the speech
and noise models were chosen to be 14. All the noise PSD estima-
tion algorithms evaluated here work on a frame size of 32 ms with
50% overlap.

4.2. Estimation Accuracy

We have used the log spectral distortion between the estimated noise
PSD and the reference noise PSD to measure the spectral estimation
accuracy of the algorithms. The reference PSD in this case is com-
puted by taking the periodogram of the noise only signal. The mean
log spectral distortion across the whole signal is given by

1
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where ¢.(k, 1) is the true noise PSD and ¢.(k, 1) is the estimated
noise PSD at the k™ frequency index of the I™ frame. This term
can be separated into distortion due to over-estimation and under-
estimation of the noise PSD, which can be written as LogErr =
LogErr,, 4+ LogErr,,, where LogErr_, and LogErr, are defined as
(8]

un’
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LogErr,, = —— E ‘rmn 0,logy=——+ ‘ (12)
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LogErr,, = — E E max | 0, log, . (13)
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Overestimation of the noise PSD measured by LogErr,, is likely
to cause speech distortion during the enhancement stage, whereas
LogErr,, gives a measure of the residual noise present in the en-
hanced signal. A plot of these measures for different acoustic back-
ground noises is shown in Section 5.

4.3. Enhancement performance

The estimated noise PSD is then incorporated in a speech enhance-
ment framework. For this, we first estimate the a priori SNR us-
ing the decision directed approach [2]. The estimated a priori SNR
is then incorporated in a Wiener filter for speech enhancement. In
this work, we have used the Segmental SNR (segSNR), Segmental
speech SNR (spSNR) and segmental noise reduction (segNR) which
has also been used in [18, 8] to evaluate the enhancement perfor-
mance. segSNR, spSNR and segNR are denoted as

-1 M
10 Dome1 SS(IM +m)
segSNR = A Z logyy =77 ! - .
= o1 (sUM +m) — 3(IM +m))

(14)
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segNR = = 3" log, Loy UM m)2 (16)
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where s(n) denotes the clean signal, e(n) denotes the noise signal,
3(n) denotes the enhanced signal and M denotes the number of sam-
ples in a segment. The term 3(n) and é(n) are obtained by the apply-
ing the estimated Wiener filter onto s(n) and e(n) respectively. The
spSNR measures the speech distortion, where an increase in speech
distortion is indicated by a decrease in spSNR. segNR gives a mea-
sure of the residual noise present in the signal after enhancement.
segSNR improvement takes into account both the speech distortion
and noise reduction. A plot of these measures for different acoustic
background noise is shown in section 5.

5. RESULTS

In this section we plot the performance metrics introduced in Sec-
tions 4.2 and 4.3 for different background noises. Figure 1 shows
the results obtained for babble noise. Figure la corresponds the
log error distortion for different methods as a function of the input
SNR. The lower shaded area of the bar plot corresponds to LogErr,,
caused due to over estimation of the noise PSD and upper part cor-
responds to LogErr,, caused due to under estimation of the noise

PSD. It can be seen that the model based approach performs the best
in terms of log distortion measure followed by MMSE, MS and IM-
CRA. Figure 1b shows the segmental SNR for the different methods
as a function of the input SNR. Figures 1c and 1d show the segmen-
tal speech SNR and noise reduction, respectively. It can be seen that
even though the model based approach performs the best in terms of
segSNR and segNR, it also has the lowest spSNR. This indicates a
high noise reduction at the cost of speech distortion. IMCRA which
performs the worst in terms of noise reduction performs the best in
terms of speech distortion. This is a common trade-off observed in
speech enhancement [19]. Figures 2, 3, 4 and 5 show the obtained re-
sults for restaurant, exhibition, street and station noise respectively.
These figures also show a similar trend as observed for the babble
noise. It should be noted that the benefit of using the model based
approach over the other methods is more pronounced in relatively
non-stationary noises such as babble and the restaurant noise. This
can be explained by the zero tracking delay of the model based ap-
proach in comparison to other nethods which atleast have a few hun-
dred milliseconds of tracking delay [4, 8].
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Fig. 1: Performace measures of the algorithms for babble noise. The
lower part of the subfigure 1a represents the LogErr,, and the upper
part in white represents LogErr,, error due to the underestimation of
noise PSD. Subfigures 1b, 1c and 1d represent the segmental SNR,
segmental speech SNR and segmental NR respectively

6. DISCUSSION AND CONCLUSION

The estimation of noise PSD is a very critical component of a speech
enhancement system. Thus, in this paper, we have evaluated four
noise PSD estimators for single channel speech enhancement in
some of the typically encountered background noises. The evalu-
ated algorithms consisted of MS, MMSE, IMCRA and a new model
based method. It was observed that the model-based method outper-
formed other algorithms in terms of the spectral estimation accuracy
for all the noise types. In terms of the enhancement performance,
the model-based approach outperformed the other algorithms for
relatively non-stationary noises such as babble and restaurant noise
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Fig. 2: Performance measures for different algorithms for restaurant
noise
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Fig. 4: Performance measures for different algorithms for street
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Fig. 3: Performance measures for different algorithms for exhibition
noise

irrespective of the SNR. In the case of more stationary noise types
such as station and street noise, the benefit of using the model-based
approach is observed only in lower SNRs.
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Fig. 5: Performace measures of the different algorithms for station
noise.
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