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ABSTRACT

Artificial bandwidth extension (ABE) algorithms have been devel-
oped to improve speech quality when wideband devices are used in
conjunction with narrowband devices or infrastructure. While past
work points to the benefit of using contextual information or memory
for ABE, an understanding of the relative benefit of explicit memory
inclusion, rather than just dynamic information, calls for a compara-
tive, quantitative analysis. The need for practical ABE solutions calls
further for the inclusion of memory without significant increases to
latency or computational complexity. The paper reports the use of
an information theoretic approach to show the potential of benefit
of memory inclusion. Findings are validated through objective and
subjective assessments of an ABE system which uses memory with
only negligible increases to latency and computational complexity.
Listening tests show that narrowband signals whose bandwidth is ar-
tificially extended with, rather than without the inclusion of memory,
are of consistently improved quality.

Index Terms— Artificial bandwidth extension, speech quality,
Gaussian mixture model

1. INTRODUCTION

Traditional telephony infrastructure is typically limited to a band-
width of 0.3-3.4kHz. Such legacy infrastructure supports what is re-
ferred to as narrowband (NB) communications. With a bandwidth
extending from 50Hz-7kHz, modern devices, systems and infras-
tructure supporting wideband (WB) communications offer enhanced
speech quality.

Since legacy infrastructure will take considerable time to replace
or upgrade, artificial bandwidth extension (ABE) algorithms have
been developed to improve speech quality when WB devices are
used with NB devices or infrastructure. ABE is used to estimate
missing highband (HB) components at 3.4-8kHz from available NB
components.

ABE solutions exploit the correlation between NB and HB com-
ponents of speech. Classical solutions estimate missing HB compo-
nents using a regression model learned from WB training data. In
ABE methods based on classical source-filter model, the HB com-
ponent is usually parameterised with some form of linear prediction
(LP) coefficients whereas the NB component can be parameterised
by a variety of static and/or dynamic spectral estimates.

In addition to being captured through front-end features, dy-
namic information, or memory can also be captured with specific
back-end regression models [1]. Hidden Markov model (HMM) [2,
3, 4, 5, 6], temporally-extended Gaussian mixture model (GMM) [7]
and deep neural network (DNN) [8, 9, 10] solutions to ABE are all
capable of capturing memory. Some DNN solutions, e.g. [11, 12,
13], capture memory in the front-end instead.

Drawing on the work to optimise front-end feature extraction
reported in [14], the first attempt to quantify the importance of front-
end memory inclusion is reported in [15, 16, 17]. The work demon-
strates the benefit of using memory in the form of delta features with
a standard regression model. While this body of work points to-
wards the importance of memory to ABE, it raises the questions of
what degree of contextual or explicit memory information is of ben-
efit to ABE and how can it be harnessed without increasing latency
and computational complexity. The lack of answers to these ques-
tions calls for a quantitative analysis which compares the benefit of
utilising memory in an otherwise fixed ABE algorithm. This is the
goal of the research reported in this paper.

It is organised as follows. Section 2 describes the approach to
assess the benefit of memory. Section 3 describes an ABE algo-
rithm and modification to accommodate the inclusion of memory.
Objective and subjective ABE assessments are reported in Section
4. Conclusions are presented in Section 5.

2. ASSESSING THE BENEFIT OF MEMORY TO ABE

Assessment is achieved by evaluating the correlation between the
HB component of a speech frame and the NB component of neigh-
bouring frames. The standard information theoretic approach to
measure the correlation in terms of mutual information (MI) is de-
scribed before the approach to analysis and the results.

2.1. Mutual information

The mutual information between two continuous random variables
X and Y with joint probability density function (PDF) fXY (x, y) is
defined according to:

I(X;Y ) =

∫ ∫
fXY (x, y) log2

(
fXY (x, y)

fX(x)fY (y)

)
dxdy (1)

If fXY (x, y) takes the form of a Gaussian mixture model
(GMM), then Eq. 1 can be written as an expectation approximated
by the sample mean over K samples as follows:

I(X;Y ) ≈ 1

K

K∑
k=1

log2

(
fXY (xk, yk)

fXY (xk)fXY (yk)

)
(2)

As reported in [14, 18], Eq. 2 can be used to estimate the MI
between NB and HB components of speech frames parameterised
with features X and Y respectively.
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Fig. 1. An Illustration of MI estimation with contextual information
from neighbouring frames. Vertical bars represent NB (bottom) and
HB (top) feature vectors. Red boxes represent the pair of NB (X =
Xt+δ, δ = −1, 0, 1) and HB (Y = Yt) components used for MI
calculations.

2.2. Analysis

The analysis of MI requires a choice of front-end features. Due to
the ease in time domain reconstruction, LP coefficients [19] are cho-
sen for HB features. NB features used here include log-Mel filter
energy (logMFE) coefficients, LP coefficients and autocorrelation
coefficients (ACs) [20].

WB speech signals from the entire TIMIT dataset [21] (exclud-
ing dialect (SA) sentences) are low and high-pass filtered and then
processed with some form of feature extraction to give NB and HB
featuresX and Y respectively. All signals are processed using 20ms
frames with 10ms overlap. NB featuresX are extracted from the NB
power spectrum PNB . logMFE features were calculated by apply-
ing a Mel filterbank (MFB) with 10 filters. LP coefficient features of
10 dimensions including the gain parameter are obtained through se-
lective linear prediction (SLP) [22, 20]. Conventional AC features
consist of the first 10 normalised coefficients. HB features Y are
similarly extracted from the HB power spectrum PWB using SLP,
also giving 10 LP coefficients including the gain.

Since phonetic events span in the order of 50ms [23], Eq. 2 is
then used with a GMM of 128 components to estimate the MI be-
tween instantaneous HB features and NB features spanning a simi-
lar duration. This procedure is illustrated in Fig. 1 where Yt is the
instantaneous HB component at time t and where Xt+δ is the NB
component at time t+ δ where δ ∈ Z.

2.3. Findings

Blue profiles in Fig. 2 show the MI (vertical axis) between instanta-
neous HB features Yt and NB features Xt+δ for δ ∈ [-5,+5] (hori-
zontal axis). The three profiles correspond to logMFE, LPC and AC
features. As expected, for all three profiles, the MI is greatest for
δ = 0 for which NB and HB features are extracted from the same
frame. For δ 6= 0, the MI is symmetrically lower. The highest MI
is obtained with logMFE coefficients. For δ = 1, 2 the MI falls by
17% and 36% relative to that obtained for δ = 0.

Fig. 2 also shows the MI between static HB and dynamic or delta
NB features (red profiles). Delta features ∆Xt,L are extracted for a
frame at time t in the usual way [15] where L ∈ [1, 5] (same hori-
zontal axis) is the number of static frames considered either side of t.
The MI between static HB and delta NB features is considerably less
than for static NB features. This observation corroborates the find-
ings reported in [15], namely that NB delta features are of little use
to ABE; they provide comparatively little information about static
HB features.

This same finding shows that ABE algorithms should use
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Fig. 2. An illustration of the variation in MI between static HB fea-
tures Yt and static NB features (blue profiles) extracted from neigh-
bouring frames Xt+δ , and delta features ∆Xt,L (red profiles).

explicit memory, i.e. static features extracted from neighbouring
frames, instead of dynamic information captured in delta features.
The research hypothesis under investigation in the remainder of this
paper is that the inclusion of memory in such a way should help
to model phonetic events or sequences which span intervals greater
than a single frame and should thus give bandwidth extended speech
of enhanced quality. Crucial to this work, however, is that the inclu-
sion of such additional information should not impact on latency or
computational complexity.

Since the highest level of MI is obtained with logMFE features,
they are used as NB representations for all subsequent experiments
reported in this paper. Note that, since the aim is to demonstrate the
contribution to ABE of memory, the use of energy based coefficients
such as those used in [24] is avoided; it is assumed that their use will
further enhance the performance of any ABE system.

3. ARTIFICIAL BANDWIDTH EXTENSION

The ABE algorithm used for all further work is illustrated in Fig. 3.
Training uses parallel WB and NB data for feature extraction and
GMM modeling. Estimation of missing HB LP coefficients is per-
formed from NB data parametrised by logMFE features. Resyn-
thesis is performed using original NB data and estimated HB LP
coefficients. Details of each step corresponding to the three blocks
of Fig. 3 are given in the following.

3.1. Training

NB and WB signals are processed frame-by-frame. xt and yt denote
NB and WB frames at time t respectively. NB features (XNB

t - top
line in training block) consist of 10 logMFE coefficients whereas
HB features (XHB

t - bottom line in training block) consist of 9 LP
coefficients aHB and a gain coefficient gHB . Both feature sets are
mean and variance normalised (mvnx and mvny) givingXNB

t,mvn and
Y HBt,mvn.

Memory inclusion: NB features at time t are concatenated with
neighbouring features extracted from δ frames either side of t thus
giving:

Xt,conc δ =
[
XNB
t−δ,mvn, ..., X

NB
t,mvn, ..., X

NB
t+δ,mvn

]T
In order that the complexity of subsequent steps is unaffected,

principal component analysis (PCA) is applied to reduce Xt,conc δ
to 10-dimensional features XNB

t,pca δ . The PCA matrix WPCA is
learned from training data and retained for use in the estimation step.
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Fig. 3. A block diagram of the ABE system with memory inclusion.

Finally, a 128-component, full-covariance GMM is learned from the
training data using joint vectors Z = [XNB

t,pca δ, Y
HB
t,mvn]T .

3.2. Estimation

NB signal frames are upsampled to 16kHz signals x̂t before feature
extraction is applied to give X̂NB

t . Memory is included according
to the same procedure used during training, thereby giving X̂NB

t,pca δ .
The regression model defined by GMM parameters learned during
training is then applied in the usual way [19] to estimate HB features
Ŷ HBt,mvn. Using means and variances obtained from the training data,
inverse mean and variance normalisation (mvn−1

y ) is then applied to
estimate HB LP coefficients âHB and gain ĝHB .

3.3. Resynthesis

Resynthesis involves the three distinct steps illustrated by the num-
bered blocks in Fig. 3. First, SLP is applied to x̂t to obtain NB LP
coefficients ĝNB and gain âNB . The NB power spectrum is then
determined and concatenated with that of the estimated HB power
spectrum obtained from ĝHB and âHB . Estimated WB parameters
ĝWB and âWB are then obtained from the inverse fast Fourier trans-
form (IFFT) and application of the Levinson-Durbin recursion to the
WB power spectrum. Second, NB speech frames x̂t are filtered us-
ing a LP analysis filter defined by ĝNB and âNB in order to obtain
NB excitation ûNB . Via spectral translation [24] with a modulation
frequency of 6.8kHz, missing excitation components from 3.4-8kHz
are estimated followed by a high pass filter (HPF) thereby giving
HB excitation components ûHBt . ûHB is then added to appropri-
ately delayed (D) ûNBt to give extended WB excitation ûWB

t . In the
third and final step, ûWB is filtered using a synthesis filter defined
by ĝWB and âWB in order to resynthesise extended WB speech ŷt
with an overlap and add (OLA) method.

4. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup, baselines and results
for objective, subjective and mutual information assessments.

4.1. Database

ABE experiments were performed using the TIMIT database [21].
The TIMIT training set (consisting of 3696 utterances spoken by
462 speakers) was used for GMM training with parallel WB and NB
speech signals processed according to the steps described in [25] (SA
dialect sentences were again removed). Assessment was performed
using the TIMIT test set (1344 utterances spoken by 168 speakers).
NB TIMIT data at 16kHz was obtained before being extended to WB
signals using ABE.

4.2. Assessment

The performance of the ABE algorithm with memory, denoted Mδ

where δ indicates the number of neighbouring frames which form the
memory, is compared to a baseline algorithm, denoted B1. System
Mδ and B1 use X̂NB

pca δ and X̂NB
t features respectively.

For comparison to past work in [17], assessment includes a sec-
ond baseline, denoted B2, which exploits memory in the form of
delta features. System B2 uses 5-dimensional static features ap-
pended with second order 5-dimensional delta features for both NB
and HB parametrisations (logMFE and LPCs in the context of our
implementation). For resynthesis, delta features from the estimated
HB feature were eliminated with only the first 5 coefficients being
used.

All ABE algorithms were implemented with Hann windows of
20ms duration and 10ms overlap, thereby supporting perfect OLA
reconstruction [26, 27]. A 1024-point FFT was used for all fre-
quency domain operations.

4.3. Objective assessment

Objective assessment was performed using well known spectral
distortion measures: the root mean square log-spectral distortion
(RMS-LSD) and the so-called COSH measure (symmetric version
of the Ikatura-Saito distortion) [28]. Defining the power spec-
tra for original H(f) and estimated Ĥ(f) spectral envelopes as
P (f) = g2/|H(f)|2 and P̂ (f) = ĝ2/|Ĥ(f)|2 where g and ĝ
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Table 1. Objective assessment results. RMS-LSD and dCOSH are
distance measures (lower values indicate better performance) in dB,
mean and (standard deviation) whereas MOS-LQOWB values reflect
quality (higher values indicate better performance).

ABE
method dRMS-LSD dCOSH

MOS-
LQOWB

B1 9.2 (1.2) 2.4 (0.7) 2.4
B2 10.1 (1.2) 3.6 (1.2) 2.2
M1 8.2 (0.9) 2.2 (0.6) 2.8
M2 8.1 (0.9) 2.1 (0.6) 2.9
M3 8.2 (0.9) 2.2 (0.7) 2.8

are the respective LP gains, then RMS-LSD and COSH distance
measures are defined as follows:

dRMS-LSD =

√√√√ 1

4F

∫
4F

[
10 log10

(
P (f)

P̂ (f)

)]2
df

dCOSH =
1

2

[
dIS(P (f), P̂ (f)) + dIS(P̂ (f), P (f))

]
where the Ikatura-Saito distortion (dIS) is defined by

dIS(P (f), P̂ (f)) =
1

4F

∫
4F

[
P (f)

ˆP (f)
− ln

P (f)

P̂ (f)
− 1

]2
df

where 4F = [3400, 8000]Hz. Finally, a WB extension to the per-
ceptual analysis of speech quality algorithm [29] is used to give ob-
jective estimates of mean opinion scores (MOS-LQOWB).

Objective assessment results are illustrated in Tab. 1. While all
ABE systems with memory outperform both baselines B1 and B2,
system M2, which uses memory contained within two neighbouring
frames, performs best. Surprisingly, baseline systemB2 gives worse
performance than B1. This is caused by the inclusion of memory
through delta features while under the constraint of fixed dimen-
sionality. The latter necessitates the loss of informative higher-order
static features in order to accommodate dynamic delta features. On
account of these findings, subjective assessments were performed
with systems B1 and M2.

4.4. Subjective assessment

Subjective assessments were performed using comparison mean-
opinion score (CMOS) tests [30]. Tests were performed by 14
listeners who were asked to compare the quality of 14 pairs of
speech signals A and B. They were asked to rate the quality of
signal B with respect to A according to the following scale: -3
(much worse), -2 (slightly worse), -1 (worse), 0 (about the same),
1 (slightly better), 2 (better), 3 (much better). The samples were
played using DT 770 PRO headphones. All speech files used for
subjective tests are available online1.

CMOS results of 0.69 and 0.51 presented in Tab. 2 show that
bandwidth extended speech produced by system M2 is preferred to
original NB speech and that produced by system B1. Further infor-
mal listening tests showed that the inclusion of memory helps to re-
duce the presence of processing artifacts in extended speech, thereby
resulting in enhanced quality.

1http://audio.eurecom.fr/content/media

Table 2. Subjective assessment results in terms of CMOS.

Comparison B→ A CMOS

M2→ NB 0.69
M2→ B1 0.51
M2→WB -0.78
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Fig. 4. A comparison of true WB LP gain ĝWB
true to estimated WB LP

gain ĝWB for systems M2 and B1.

Table 3. Mutual information assessment results

Comparison logMFE

I(Xt;Yt) (System B1) 1.24
I(X̂NB

pca 2;Yt) (System M1) 1.34

An illustration of the improvement over the baseline B1 in gain
estimation as a result of memory inclusion is shown in Fig. 4. Im-
provements in gain estimation reduce processing artifacts, improve-
ments which are confirmed by reductions in RMS-LSD.

4.5. Mutual information assessment

A final set of experiments aims to further validate the findings of
both objective and subjective assessments by showing the improve-
ment in mutual information (MI) brought by the inclusion of mem-
ory. Tab. 3 compares the MI between features Xt and Yt with that
betweenXNB

t,pca 2 and Yt. Results show that the inclusion of memory
results in notably higher MI; memory helps to better model missing
HB information.

5. CONCLUSIONS

This paper reports an approach to artificial bandwidth extension that
incorporates the use of memory in the estimation of missing high-
band speech components. The paper extends prior work that studied
the benefit of capturing memory via dynamic delta features or of
incorporating memory into hidden Markov model and deep neural
network solutions. New to this contribution is a study of the ex-
plicit inclusion of memory captured through static features extracted
from neighboring speech frames. The potential of this approach is
first demonstrated through information theoretic analyses and then
validated though both objective and subjective assessments. The in-
clusion of memory captured from two neighbouring frames leads to
artificially extended speech of enhanced quality. Key to this contri-
bution and a further differentiator to prior work is the use of feature
dimensionality reduction which ensures only negligible impacts on
latency and complexity. Future work should investigate dimension-
ality reduction techniques designed to preserve quality rather than
feature variance. Finally, it is hoped that the study reported in this
paper may help to shed light on the use of memory in deep learning
solutions to artificial bandwidth extension.
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