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ABSTRACT

This study presents a spectro-temporal neural factorization
(STNF) for speech dereverberation. Traditionally, a contex-
tual window of spectro-temporal reverberant speech was un-
folded into a one-way vector which was fed into a neural net-
work to estimate the spectra of source speech at each time
frame. Model parameters were trained by using the vector-
ized error backpropagation algorithm. System performance
is constrained because contextual correlations and common
factors in frequency and time horizons are disregarded. To
compensate this weakness, a spectro-temporal factorization
is incorporated to preserve the structural information in neu-
ral network training based on bi-factorized error backprop-
agation where the spectral and temporal factor matrices are
estimated. Affine transformation in one-way neural network
is generalized to the bilinear decomposition in bi-factorized
neural network. The spectro-temporal features are extracted
and forwarded to fully-connected layers for regression out-
puts. Such a STNF is further improved by merging with long
short-term memory layer to capture the temporal features. Ex-
periments results on 2014 REVERB Challenge demonstrate
the meaningfulness of the factorized features and the merit of
integrating these features for speech dereverberation.

Index Terms— spectro-temporal neural factorization,
factorized error backpropagation, speech dereverberation

1. INTRODUCTION

Matrix factorization and deep neural network (DNN) have
been extensively developing in the areas of signal process-
ing and machine learning with numerous applications rang-
ing from speech recognition [1] to computer vision, source
separation [2, 3, 4, 5], music information retrieval and nat-
ural language processing. Many extensions have been pro-
posed to discover the insights to improve system performance
from different perspectives. Basically, matrix factorization
performs two-way decomposition and is generalizable to ten-
sor factorization for multiple-way observations [6]. The front-
end processing based on signal decomposition helps extract-
ing meaningful features in back-end modeling for regression
or classification. In the literature, several works have been
proposed to strengthen the modeling capability by integrat-
ing neural network and tensor factorization. In [7], a deep

tensor neural network was constructed by cascading the dou-
ble projection layer and the tensor layer so as to learn the
complimentary features from two hidden vectors. The multi-
way tensor weights were estimated to capture the relations
between features or neurons. The inputs were still one-way
vectors. In [8], the convolutional neural network (CNN) was
developed to extract the spatial features through convolution
layer followed by pooling layer where no factorization was
performed. In [9, 10, 11], a tensor classification network was
proposed for image recognition and speech recognition where
the multi-way inputs were factorized and fed into a classifica-
tion neural network.

This paper presents the spectro-temporal neural factor-
ization (STNF) in a layer-wise regression model with ap-
plications for speech dereverberation. Our idea is to relax
the limitation in the vectorized neural network and preserve
the spectro-temporal features to learn regression outputs for
source signals by using the spectro-temporal input matrices.
We improve the learning representation by seamlessly com-
bining matrix factorization and neural network. By using the
spectro-temporal factorized neural network, the contextual
features in hybrid frequency and time domains are extracted
to learn structural abstraction in a deep model. A two-way
factorized error backpropagation is proposed to realize STNF
for spectral mapping and dereverberation. The gradients for
minimization of regression errors are calculated by transpose
factorization. There are different settings in the implementa-
tion. The STNF layers can be either cascaded with the fully
connected layers in feedforward neural network or connected
with the long short-term memory layer in recurrent neural
network. The STNF layers can be also merged with convo-
lutional layers to learn the shared and factorized weights for
source separation. The benefit of applying STNF in different
settings is shown by experiments on speech dereverberation.

2. RELATED WORKS

2.1. Spectro-temporal factorization

In signal processing, we usually represent an observed time-
series signal, e.g. speech or music, using a spectro-temporal
data matrix X which contains the log magnitude spectra cal-
culated by short-time Fourier transform (STFT). According
to Tucker decomposition, this matrix X = {Xft} ∈ RF×T
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with F frequency bins and T time frames can be factorized to
obtain a core matrix A = {Aij} ∈ RI×J by

X = A×1 U×2 V (1)

where ×n denotes the model-n product and U = {Ufi} ∈
RF×I and V = {Vtj} ∈ RT×J denote the factor matrices
in two horizons. I and J indicate the reduced dimensions
corresponding to F and T , respectively. Each entry in core
matrix is expressed by Xft =

∑
i

∑
j AijUfiVtj . This de-

composition can be solved by using the bilinear singular value
decomposition [6]. Basically, matrix factorization is seen as
a two-way realization of tensor factorization. It is important
that the inverse of Tucker decomposition is yielded by

A = X×1 U† ×2 V† (2)

where U† = (U>U)−1U> is the pseudo-inverse of U. The
core matrix A is viewed as a factorized feature matrix of the
spectro-temporal matrix X. This study adopts this property
to fulfill the spectro-temporal neural factorization for speech
dereverberation.
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Fig. 1. Deep recurrent neural network for spectral mapping.

2.2. Dereverberation neural network

Figure 1 depicts a deep recurrent neural network (RNN)
[12] for speech dereverberation which is developed for spec-
tral mapping [13] from a reverberant speech xt = {Xft}
to a clean speech rt = {Rft}. The input vector x̃t =
[x>t−d, . . . ,x

>
t , . . . ,x

>
t+d]

> consists of a window of 2d + 1
frames of reverberant speech centered at time t. Each frame
xt has values in F frequency bins. In the implementation,
the forward and backward calculations are required to train

this vector-based neural network. In forward pass, the affine
transformation and nonlinear activation are calculated by
z
(l)
t = h(a

(l)
t ) = h(w(l)z

(l−1)
t ) in each fully-connected (FC)

layer l. Nonlinear activation function h(·) can be sigmoid or
ReLU. The recurrent layer m is calculated by

z
(m)
t = h(a

(m)
t ) = h(w(m)z

(m−1)
t + w(mm)z

(m)
t−1) (3)

where forward weights w(m) and recurrent weights w(mm)

are both functioned. Temporal information is captured for
speech dereverberation. Notably, the input x̃t, hidden features
{z(l)t , z

(m)
t } and output yt are all vectors which are individu-

ally calculated in different time frames t. In backward pass,
the weight parameters Θ = {w(l),w(m),w(mm)} in differ-
ent layers are estimated according to the vector-based error
backpropagation algorithm where the sum-of-squares error
function using T training samples {X,R} = {Xft, Rft}

E(Θ) =
∑
n

En(Θ) =
1

2

∑
t

∑
f

(Yft(Θ)−Rft)
2 (4)

is minimized. n means the index of minibatch. yt = {Yft}
is the outputs of dereverberation neural network at time t.
However, RNN suffers from the problem of gradient vanish-
ing and exploding. Long short-term memory network [14] is
feasible to deal with this problem. In this spectral mapping,
each frame is represented by an unfolded vector with dimen-
sion (2d+ 1) · F . This one-way vector is fed into traditional
neural network for training and prediction. The spatial in-
formation in a context window was partially disregarded. In
[8], CNN was developed to catch spatial features by means of
convolution layers and pooling layers. There was no factor-
ized features extracted in different ways for classification or
regression.

3. FACTORIZED NEURAL NETWORK

The factorized neural network is built by merging spectro-
temporal features in dereverberation neural network.

3.1. Spectro-temporal neural factorization

Given a spectro-temporal input matrix X = {xt}Tt=1 =

{Xft}, the latent matrix A(1) = {A(1)
ji } in the first hidden

layer is obtained by the factorization through two factor ma-
trices U(1) = {U (1)

if } ∈ RI×F and V(1) = {V (1)
jt } ∈ RJ×T

via

A(1) = X×1 U(1) ×2 V(1) =
∑
f

∑
t

Xft(u
(1)
f ◦ v

(1)
t ) (5)

which is seen as a summation of outer products of all in-
dividual columns of factor matrices u

(1)
f and v

(1)
t along

frequency and time horizons, respectively. After this bilinear
transformation, we obtain a spectro-temporal feature ma-
trix Z(1) = {Z(1)

ij } ∈ RI×J through an activation function
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Z(1) = h(A(1)). This feature matrix is then factorized and
activated again as A(2) and Z(2) in the second hidden layer,
respectively. The feedforward computation is run layer by
layer until layer L to find dereverberant speech Y ∈ RF×T

corresponding to reverberant speech X in spectral mapping.
In the last layer L, the dereverberant speech matrix is calcu-
lated by

Y = h(A(L)) = h(Z(L−1) ×1 U(L) ×2 V(L)) (6)

where A(L) = {A(L)
ft } denotes the activation matrix in layer

L and Z(L−1) = {Z(L−1)
ij } denotes the output matrix of hid-

den units in layer L−1. Given the dereverberant output matrix
Y and the clean speech matrix R, we calculate the sum-of-
squares error function E(Θ) in Eq. (4) for optimization to
estimate the STNF parameters Θ which contain the spectral
parameters U(l) and the temporal parameters V(l) in different
layer l. Different from vector-based neural network in Section
2.2 calculating the propagation of input xt at each time t in-
dependently, the proposed STNF conducts the layer-wise cal-
culation over a window of reverberant speech frames X. The
hybrid spectro-temporal features are jointly characterized.

3.2. Factorized error backpropagation

To estimate model parameters Θ = {U(l),V(l)}, we perform
the stochastic gradient descent (SGD) algorithm by calculat-
ing the gradients of En over a minibatch data index n with
respect to individual parameters in Θ. Starting from the re-
gression layer L, we calculate the local gradient

∂En

∂A
(L)
ft

=
∂En

∂Yft

∂Yft

∂A
(L)
ft

= (Yft −Rft)h
′(A

(L)
ft ) , D(L)

ft (7)

of an output neuron at frequency f and time t and then find
the gradients

∂En

∂U
(L)
if

=
∑
t

∂En

∂A
(L)
ft

∂A
(L)
ft

∂U
(L)
if

=
∑
t

D(L)
ft

(∑
k

Z
(L−1)
ki V

(L)
kt

)
= 〈D(L)

f : ,Z
(L−1)
:i ×2 V(L)〉

∂En

∂V
(L)
jt

= 〈D(L)
:t ,Z

(L−1)
j: ×1 U(L)〉

for updating parameters U(L) and V(L), respectively. We
assume Z(L−1) = {Z(L−1)

ji } ∈ RJ×I . After updating
{U(L),V(L)}, we propagate local gradients from D(L) =

{D(L)
ft } in layer L back to D(L−1) = {D(L−1)

ji } in layer
L− 1 through

∂En

∂A
(L−1)
ji

=
∑
f

∑
t

∂En

∂A
(L)
ft

∂A
(L)
ft

∂Z
(L−1)
ji

∂Z
(L−1)
ji

∂A
(L−1)
ji

, D(L−1)
ji . (8)

which can be written as matrix form D(L−1) = h′(A(L−1))�
(D(L)×1(U

(L))>×2(V
(L))>) where� denotes the element-

wise product. These local gradients D(L−1) will be used to

calculate gradients for updating the spectral and temporal fac-
tor matrices {U(L−1),V(L−1)} in layer L − 1. Notably, the
local gradient D(L−1) in layer L−1 is calculated in a form of
transpose factorization by using {D(L), (U(L))>, (V(L))>}
in layer L. It is meaningful that the gradients with respect to
spectral factor U (L)

if at frequency f and temporal factor V (L)
jt

at time t are calculated by summing up all information over
time frames t and frequency bins f , respectively.
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Fig. 2. Analysis of hidden layers of speech dereverberation in
spectral and temporal domains.

Figure 2 illustrates how an input matrix X of a short seg-
ment of reverberant speech is transformed to find the activa-
tion matrices A(l) in two hidden layers l = 1, 2 and the output
matrix of dereverberant speech Y. The second and third rows
show the visualization of spectral domain A

(l)
f and temporal

domain A
(l)
t , respectively. The factorized features in spectral

and temporal domains are well reflected. The features in sec-
ond hidden layer are more abstract than those in first layer.
The smeared spectrogram is enhanced by using STNF layers.

4. EXPERIMENTS

4.1. Experimental setup

We evaluated the proposed method by using 2014 REVERB
Challenge dataset [15], which contained the reverberation and
stationary noise [16]. There were eight different acoustic con-
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ditions of which six were simulated by convolving the WSJ-
CAM0 corpus with three room impulse responses at near (50
cm) and far microphone distances (200 cm), and adding the
stationary noise recordings from the same rooms at signal-to-
noise-ratio (SNR) of 20dB (SimData). There were 1484 and
2176 utterances from 20 and 28 speakers collected as the de-
velopment and evaluation data, respectively. The other two
conditions were real recordings (RealData) in a reverberant
meeting room at two microphone distances (near at 100 cm
and far at 250 cm) with stationary noise, taken from the MC-
WSJ-AV corpus [17]. 179 and 372 utterances from five and
ten speakers were collected as development and evaluation
data, respectively. Reverberation time T60 ranged from 0.25s
to 0.7s, but was unknown at test time. Training data had 7862
utterances from 92 speakers. Dereverberation performance
was evaluated by the speech-to-reverberation modulation en-
ergy ratio (SRMR) [18] (higher is better) and the perceptual
evaluation of speech quality (PESQ) (higher is better). The
results of SimData and RealData were averaged over the cor-
responding conditions.

In the implementation, 320-point STFT was calculated.
At each time frame, an input matrix consisting of five neigh-
boring frames with dimension 160 × 11 was formed and re-
gressed into a target frame 160 × 1 in dereverberant speech.
STNF layers were empirically configured with a fixed size
90 × 8. Hidden and output layers were implemented by us-
ing ReLU and sigmoid activations, respectively. The base-
line DNN system was built by using two, three or four FC
layers (FC2, FC3, FC4). Using the proposed method, there
were two, three or four STNF layers followed by one FC
layer to implement the STNF2-FC, STNF3-FC, STNF4-FC.
The topologies of three LSTM layers (LSTM3), three STNF
layers (STNF3) and two or three STNF layers followed by
LSTM layer (STNF2-LSTM, STNF3-LSTM) were also ex-
amined. CNN was implemented by referring [9]. SGD al-
gorithm was run using a mini-batch size of 128 frames with
`2 regularization where regularization parameter was selected
from validation data. Adam algorithm was applied. Weights
were randomly initialized by an uniform distribution. We de-
layed the LSTM outputs by five frames to make prediction
of a future frame. LSTM with 256 memory cells was imple-
mented. The size of hidden matrices in STNF and STNF-
LSTM was comparable with the size of hidden vectors in FC.

4.2. Experimental results

Table 1 reports the results of SRMR and PESQ in speech dere-
verberation by using different neural network methods under
the conditions of SimData and RealData. Number of param-
eters is included in the comparison. SRMR and PESQ are
improved by increasing the number of FC layers in hidden
structure of DNN. Using various methods, the improvement
of SRMR and PESQ in RealData condition is much higher
than that in SimData condition. LSTM and CNN do increase

Model SimData RealData # ParSRMR PESQ SRMR PESQ
Unprocessed 3.70 2.18 3.81 2.89 –

FC2 3.79 2.32 7.78 5.93 1.90
FC3 3.85 2.83 8.43 7.19 2.42
FC4 3.81 2.73 8.45 7.14 2.94

LSTM3 3.90 2.92 8.95 7.94 2.81
CNN 3.92 2.99 8.62 7.68 2.65

STNF3 3.78 2.29 7.21 6.88 0.05
STNF2-FC 3.89 2.84 8.98 7.19 0.66
STNF3-FC 4.09 3.19 9.93 8.13 0.67
STNF4-FC 3.97 3.10 8.83 7.99 0.68

STNF2-LSTM 4.20 3.33 9.83 9.53 0.78
STNF3-LSTM 4.13 3.29 10.09 9.13 0.79

Table 1. Comparison of SRMR (in dB), PESQ (in dB) and
number of parameters (in millions) under the conditions of
SimData and RealData by using different models.

the values of SRMR and PESQ when compared with DNN.
Temporal and convolutional information is helpful for speech
dereverberation. The stand-alone STNF layers do not work
well. However, the improvement of combing STNF layers
with FC layer is clearly obtained. The highest SRMR and
PESQ are achieved by cascading STNF layers with LSTM
layer. This result is considerably better than that of CNN.
In terms of total number of parameters, STNF layer is much
more efficient than FC layer because STNF parameters are
counted by adding the dimensions of factor matrices in spec-
tral and temporal domains. But, the parameters of FC layer
are counted by multiplying the dimensions of one-way matrix
between two layers. STNF layer is superior to FC layer with
higher SRMR and PESQ and lower number of parameters.

5. CONCLUSIONS

We have presented a spectro-temporal neural factorization to
build a deep recurrent neural network for speech dereverber-
ation. The factorized features were extracted to capture the
abstraction in spectral and temporal spaces and enhance the
blurred spectrogram in a distorted speech due to the room
reverberation. The forward calculation in layer-wise neural
network was run as a matrix factorization while the backward
calculation was performed to propagate the local gradient
layer by layer which was also seen as an operation of matrix
factorization. The resulting STNF layers outperformed the
fully-connected layers in the experiments of speech derever-
beration in terms of quality measures using SRMR and PESQ.
STNF layers used smaller number of parameters than FC lay-
ers. The topology of cascading STNF layers with LSTM
layer obtained the best measures among different topologies.
Future work will be extended to incorporating convolutional
neural network in STNF neural network. Tensor factorized
neural network will be implemented using multi-way data.
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