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ABSTRACT

A blind bandwidth extension (BBWE) expands the bandwidth of
telephone speech which often is limited to 0.2 to 3.4 kHz. The ad-
vantage is an increased perceived quality as well as an increased
intelligibility. This work presents a BBWE similar to state-of-the-art
bandwidth extensions like Intelligent Gap Filling with the difference
that all processing is done in the decoder without the need of trans-
mitting extra bits. Parameters like spectral envelope are estimated
by a regressive Convolutional Deep Neuronal Network (CNN) with
long short-term memory (LSTM). The system operates on frames
of 20 ms without additional algorithmic delay and can be applied in
state-of-the-art speech and audio codecs.

Index Terms— Blind Bandwith Extension, Artificial Band-
width Extension, Speech Coding, Audio Coding, DNN, regressive
DNN, LSTM, CNN

1. INTRODUCTION

Todays most used codec for mobile speech communication is still
AMR-NB which encodes only frequencies from 200 to 3400 Hz
(usually named narrowband, (NB)). The human speech signal
though has a much wider bandwidth - especially fricatives often
have most of their energy above 4 kHz. Limiting the frequency
range of speech will not only sound less pleasant but will also be
less intelligible [1, 2].

State-of-the-art audio codecs like EVS [3] are able to code a
much wider frequency range of the signal but using these codecs will
require a change of the whole communication network including the
receiving devices. This is a huge effort and known to last several
years. Blind bandwidth extensions (BBWE - also known as artifi-
cial bandwidth extension or blind bandwidth expansion) are able to
extent the frequency range of a signal without the need of additional
bits. They are applied to the decoded signal only and do not need any
adaption of the network or the sending device. While being an ap-
pealing solution to the problem of limited bandwidth of narrow band
codecs lots of systems fail to improve the quality of speech signals.
In a joint evaluation of latest bandwidth extensions, only four out of
12 systems managed to improve the perceived quality significantly
for all tested languages [4].

Following the source-filter model of speech production most
bandwidth extensions (blind or non-blind) have two main building
blocks - the generation of an excitation signal and estimation of the
vocal tract shape. This is also the approach the presented system fol-
lows. A commonly used technique for generating the excitation sig-
nal is spectral folding, translation or nonlinear processing. The vocal
tract shape is often generated by Gaussian Mixture Models (GMM),

Hidden Markov Models (HMM), Neural Networks or Deep Neural
Networks (DNN). These models predict the vocal tract shape from
features calculated on the speech signal.

In [5] and [6] the excitation signal is generated by spectral fold-
ing and the vocal tract filter is realized as all-pole filter in time-
domain by an HMM. First a codebook of linear prediction coeffi-
cients (LPC) calculated on frames containing the upper band speech
signal is created by vector quantization. At decoder-side features
are calculated on the decoded speech signal and an HMM is used to
model the conditional probability of a codebook entry given the fea-
tures. The final envelope is the weighted sum of all codebook entries
with the probabilities being the weights. In [6] fricative sounds are
additionally emphasized by a neural network.

In [7] the excitation signal is also generated by spectral folding
and the vocal tract is modeled by a neural network which outputs
gains applied to the folded signal in a Mel filterbank domain.

In [8] a DNN is used to predict the spectral envelope of a spectral
folded excitation signal (phrased here as imaged phase). The system
in [9] also uses the spectral folded excitation signal and shapes the
envelope by a DNN comprising LSTM layers. Using several frames
of audio as input for the DNN these two systems have an algorithmic
delay too high for realtime telecommunication.

A recent approach directly models the missing signal in time-
domain [10] with an algorithmic delay of 0 to 32 ms with an archi-
tecture similar to WaveNet [11].

The main contribution of this work is a BBWE that operates
on frames of 20 ms and exploits the performance of state-of-the-art
convolutional and recurrent networks to model the spectral envelope
of speech signals. The next section will outline the proposed blind
bandwidth extension and section 3 will focus on the deep neural net-
work. Finally the system will be evaluated in section 4 followed by
a some conclusions in 5.

2. SYSTEM OVERVIEW

A basic acoustic model of the human speech production process
combines a periodic, pulse-like excitation signal (the larynx signal)
modulated by a transfer filter determined by the shape of the supra-
laryngeal vocal tract. Furthermore there are noise-like signals that
result form turbulent air flow caused by constriction of the vocal
tract or the lips. Based on this model the missing frequency range
is extended by extending a spectrally flat excitation signal and then
shaping it with an estimate of the vocal tract filter. Figure 1 depicts
the proposed system. From the decoded time-domain signal blocks
of 20 ms are transformed by a DFT to the frequency domain. The
frame increment (hop-size) of adjacent frames is 5 ms. In the fre-
quency domain the signal is upsampled to 16 kHz by zero-padding
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and the missing frequency content above 7 kHz is generated in the
same way as in bandwidth extensions like Intelligent Gap Filling
(IGF) or SBR [12, 13]: the lower bins are copied-up to create the
missing signal. Since codecs like AMR-NB only code frequencies
between 200 and 3400 Hz this signal is not enough to fill the miss-
ing range of 8000-3200 = 4800 Hz. Therefore this operation has to
be done twice - first time to fill the range of 3400 to 6600 Hz and
another time to fill the range of 6600 to 8000 Hz.

This artificial generated signal is too tonal compared to the orig-
inal excitation signal. A low complex method used in IGF is used
to reduce the tonality [14]. The idea here is to divide the signal by
its spectral envelope generated by FIR-filtering the power spectrum.
This serves two purposes - first the formant structure is removed
from the copied signal (this could also be achieved by using the LPC
residual), second the ratio of the energy of the harmonics to the noise
is lowered. Therefore this signal will sound much more natural.

After an inverse DFT of double the size than the initial DFT the
time-domain signal with 16 kHz sampling frequency is generated by
overlap-adding blocks with 50% overlap. This time-domain signal
with flat excitation signal above 3400 Hz will now be shaped to re-
semble the formant structure of the original signal. This is done in
the frequency domain of a DFT with higher time-resolution operat-
ing on blocks of 10 ms. Here the signal in the range of 3400 to 8000
Hz is divided into 5 bands of roughly 1 bark width [15] and each
DFT-bin Xi inside band b is scaled by a scaling factor fb:

X̂i = Xi

√
fb. (1)

The scaling factor fb is the ratio of the logarithmic energy esti-
mate Lb and mean energy of the bins i in band b:

fb =
eLb∑
j |Xj |2

, (2)

where j iterates over all bins inside band b. Lb is calculated by a
DNN explained in the next section and is an estimate of the true
wide-band energies L̃b:

L̃b = log
∑
j

|X̃j |2, (3)

which is calculated on the spectrum of the original wide-band signal
X̃ .

Finally the scaled spectrum X̂i is converted to time-domain by
an inverse DFT and the output signal is generated by overlap-adding
previous frames with 50 % overlap.

3. DNN

The target energy estimate Lb in equation 2 in section 2 scales the
spectrum of the synthesized signal to approximate the energy of the
original signal. This value is calculated by a DNN. The input to
the DNN are concatenated frames of the lower band power spec-
trum. This is different to state-of-the-art methods where the input
are features like Mel Frequency Cepstral Coefficients. Instead the
first DNN layers are convolutional layers (CNN) followed by LSTM
layers and a final fully connected layer with linear activation func-
tions.

CNNs are a variation of multilayer perceptrons inspired by the
organization of receptive fields in eyes. A CNN layer is a layer of fil-
ter kernels with the kernel coefficients learned during training [16].
CNNs exploit local dependencies much better and with fewer train-
able coefficients than fully connected layers. The dimension of the
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Fig. 1. Block diagram of the proposed system. Input is a narrow-
band (NB) signal that is extended to a wideband (WB) signal in two
stages. In the first 4 blocks the signal is upsampled to 16 kHz and
the excitation signal is generated. In the remaining blocks the WB
envelope is shaped by a DNN in the frequency domain of a DFT with
a higher time-resolution

filter kernel is in principle arbitrary but should not exceed the di-
mension of the input data. Here two-dimensional filter kernels are
convolved with the input spectrogram in time and frequency dimen-
sion. These filter are able to detect abstract pattern in the signal sim-
ilar to features like i.a. spectral centroid or Mel Frequency Cepstral
Coefficients.

The convolutional layers are followed by recurrent layers. Re-
current layers are suited to learn longer time-dependencies. There
are different types of recurrent layers and here LSTM-layers showed
the best performance. LSTMS are able to exploit short as well as
long time structure [17]. Similar but slightly less performance could
be achieved with layers of gated recurrent units (GRU) [18].

The last layer of the network is a fully connected layer with lin-
ear output function. The linear output function allows the network
to output unlimited continuous values.

The DNN is trained in a supervised manner by minimizing the
difference between the energies of the true wide-band spectrum L̃b

and the per iteration estimate Lb. For this a variant of the mini-
batch stochastic gradient descent algorithm (SGD) called Adagrad
[19] was used. Like in standard SGD the networks parameters are it-
eratively updated until a local minimum of a predefined loss-function
is reached but no learning rate has to be tuned by hand.

An important aspect is the definition of the loss function. Since
the system will ultimately be judged by humans listeners a percep-
tual motivated loss is beneficial. Furthermore the training shall be
done with deep learning libraries like Keras [20] and for this reason
the loss and its derivative must be able to be calculated efficient on
CPUs or GPUs. In this work the logarithm in equation 3 implements
a coarse loudness model. The advantage of this is that the error
function reduces to the euclidian distance. Replacing the logarithm
in equation 3 by ()

1
3 has also been tried but informal listening didn’t

show any benefits.
Another important aspect is the algorithmic delay of the DNN

since the presented system should be used in realtime applications.
Because the DNN operates on concatenated frames with a frame-
increment of one frame the main source of delay comes from the first
convolutional layer. In favor of keeping the delay as low as possible
the time-dimension of the kernel was set to three - meaning a kernel
covers three frames. Since the DNN operates on shorter frames than
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Fig. 2. Comparing the performance of different DNN configurations.
System Opt has two convolutional layers (4 kernels) followed by two
LSTM layers (16 units each). System A has a single CNN layer (4
kernels) and a single LSTM layer (16 units). System B has no CNN
layer but two LSTM layers (32 and 16 units). System C has two
CNN layers (4 kernels each)

the upsampling and excitation generation in 2 the convolutional layer
doesn’t add additional algorithmic delay. In frequency direction the
kernels cover 250 Hz. Other kernel sizes have been tested but didn’t
improve the performance.

3.1. Training Data

One important aspect of training a DNN is the versatility of the train-
ing set. In order to build a model that is large enough to model the
highly non-linear characteristics of the vocal tract the training set
needs to be large and contain a vast variety of data - namely different
speakers with different languages all of this recorded with different
recording gear in different rooms. The 400 minutes long training
set has been compiled from several public accessible speech corpora
[21] as well as in-house recordings. The training set contains na-
tive spoken speech including the following languages: native Amer-
ican English, Arabic, Chinese (Mandarin), Dutch, English (British),
Finnish, French, German, Greek, Hungarian, Italian, Japanese, Ko-
rean, Polish, Portuguese (Brazilian), Russian, Spanish (Castilian),
Swedish. The evaluation set neither contains speaker from the train-
ing set nor a recording setup used in the training set and is 8 minutes
long.

4. EVALUATION

The presented system was evaluated by objective and subjective
tests. First the structure of the network was optimized by maximiz-
ing Logarithmic Spectral Distortion or LSD. LSD is a well-known
measure used in most publications regarding quantization of Linear
Prediction Coefficients and correlates well with subjective percep-
tion:

LSD =
1

M

M−1∑
i=0

√√√√ 1

N

N−1∑
j=0

(10 log10 |Xj | − 10 log10 |X̃j |)2,

where X̃ is the upper band spectrum of the original signal, X is the
upper band spectrum of the predicted signal and N is the number
of bins in the upper band. M is the number of frames used for the
evaluation.
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Fig. 3. Error on training set (dashed line) and test set (solid line)
dependent on amount of data. With few training data (100 minutes
or less) strong overfitting occurs. With a training set of more than
400 minutes overfitting is eliminated

Figure 2 compares the performance of different DNN configu-
rations. The best performing system (Opt) has two convolutional
layers with 4 filter per layer, followed by two LSTM layers with 16
units each layer. System A has a single CNN layer with 4 kernels and
a single LSTM layer with 16 units. System B has no CNN layer at
all but two LSTM layers (32, and 16 units). System C has two CNN
layers (4 filter per layer) and no LSTM layer. Here it shows that
LSTM layers have the biggest influence on the performance. A sys-
tem with no LSTM layer performs much worse than a system with
LSTM layer. The influence of the convolutional layer on the perfor-
mance is less - a system without a convolutional layer still performs
only 0.5 dB worse than the best system.

Figure 3 shows the influence of the amount of training data on
the performance. Small training sets may lead to models that per-
form very well on the training set but not on unknown data. Here
it shows that a training set of 400 and more minutes is enough to
create a model with almost no overfitting. Of course this may not be
generalized to models with much higher capacity.

Table 1 evaluates the performance of a training and test set mis-
match - one being coded with AMR-NB, the other one being un-
coded. The left column shows the performance of the DNN trained
on speech coded with AMR-NB, the right column shows the perfor-
mance of a DNN trained on uncoded speech. In the upper row the
test set was coded with AMR-NB, in the lower row the test set was
uncoded. Apparently a DNN trained on speech coded with AMR-
NB performs better in a situation where the system would be applied
to uncoded speech than vice versa. In addition AMR-NB degrades
the performance of almost half a dB.

DNN AMR-NB DNN uncoded
test set AMR-NB 6.4 7.8
test set uncoded 7.5 6.0

Table 1. Performance of the DNN being trained with speech coded
with AMR-NB (left column) or with uncoded speech (right column)
evaluated on test sets being coded with AMR-NB (upper row) or
uncoded (lower row). Performance shown as log spectral distortion
(LSD)
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Fig. 4. Results form the ACR listining test displayed as MOS values
with 95% confidence intervals. The codecs under test are - from
left to right - 1) direct wide-band 2) direct narrow-band 3-5) MNRU
10 - 30 dB noise 6) AMR-NB 7.4 kbps 7) AMR-NB 7.4 kbps with
blind bandwidth extension 8) AMR-NB 7.4 kbps with oracle BWE
9) AMR-NB 12.2 kbps 10) AMR-NB 12.2 kbps with BBWE 10)
AMR-NB 12.2 kbps with oracle BWE

4.1. Listening Test

Finally the presented system was evaluated with a listening test with
the same test method as in [4]. The test is an Absolute Category Rat-
ing (ACR) test [22] where a stimulus is presented to a listener with-
out any reference. The listener rates the stimulus on a scale from 1
to 5 (Mean Opinion Score, MOS). 29 unexperienced listeners par-
ticipated in the test and the test material were 30 recordings of both
female and male speech without background noise. Each recording
contains a sentence pair and was 8 s long. Each condition was tested
with 6 different speech files from 3 female and 3 male speakers.
Before the main test started, six speech files of different processing
conditions and speakers were presented to the participants in order
to accustom them to the range of qualities to be experienced in the
test.

The results from the test are presented in figure 4 displayed as
average MOS-values with 95 % confidence intervals. The direct WB
condition achieved the highest ratings of 4.8 MOS while the direct
NB condition achieved 2.8 MOS. Next are the Modulated Noise Ref-
erence Units (MNRU) [23] which is speech degraded by modulated
noise (sampled at 16 kHz). They serve as quality anchor and make
the test comparable to other tests. Finally the results of AMR-NB,
AMR-NB with the presented blind bandwidth extension and AMR-
NB with an oracle bandwidth extension are shown at two different
bitrates - 7.4 kbps and 12.2 kbps. The oracle system differs from the
presented system by scaling the spectrum to reach the energy of the
original. This is done by replacing the DNN estimate Lb in equation
2 by L̃b calculated on the original WB spectrum. This system is an
upper bound of quality a bandwidth extension could reach.

The results show that presented bandwidth extension works well

by improving the quality of AMR-NB by 0.8 MOS (7 kbps) to 0.9
MOS (12.2 kbps). The BBWE at 12.2 kbps is also significant better
than the direct NB condition. Nevertheless there is still lot of space
for improvement as the results from the oracle BWE show.

5. CONCLUSION

A blind bandwidth extension was presented that is able to improve
the quality of AMR-NB by 0.8 - 0.9 MOS. It does not add additional
algorithmic delay to AMR-NB. The complexity is also moderate so
it can be implemented on mobile devices. The system can be easily
adopted to different core codecs and reconfigured to different band-
width settings.
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