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ABSTRACT

Traditional speech enhancement techniques modify the mag-
nitude of a speech in time-frequency domain, and use the
phase of a noisy speech to resynthesize a time domain speech.
This work proposes a complex-valued Gaussian process latent
variable model (CGPLVM) to enhance directly the complex-
valued noisy spectrum, modifying not only the magnitude
but also the phase. The main idea that underlies the devel-
oped method is the modeling of short-time Fourier transform
(STFT) coefficients across the time frames of a speech as a
proper complex Gaussian process (GP) with noise added. The
proposed method is based on projecting the spectrum into a
low-dimensional subspace. Experiments were carried out on
the CHTTL database, which contains the digits zero to nine in
Mandarin. Several standard measures are used to demonstrate
that the proposed method outperforms baselines with various
types of noise and SNR levels.

Index Terms— Phase, complex-valued Gaussian process
latent variable model, binary mask

1. INTRODUCTION

The goal of speech enhancement [1] is to increase the qual-
ity and intelligibility of a noisy speech. Two major methods
of representing a signal in the time-frequency (T-F) domain
are used. The first is a statistical model-based method [2, 3],
which does not require prior knowledge about speech or noise
signals, so has a low computational complexity. The second is
a template-based method [4], in which the patterns of speech
(noise) are stored in the pre-trained speech (noise) model. In
these methods, T-F masking is commonly used to extract the
speech component from a noisy signal. However, the masked
signal still contains some noise and causes speech distortion.

To solve these problems caused by T-F masking, various
approaches have been developed for enhancing masked spec-
tra. One of a well-known method is template-based method
[5, 6, 7, 8]. Williamson et al. employed a sparse representa-
tion (SR) method [5] and a non-negative matrix factorization
(NMF) method [6] to enhance the masked speech signal.
Recently, Wang et al. [8] presented a compressive sens-
ing (CS)-based speech enhancement method. Notably, all

*Both authors contributed equally to this work.

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

5439

of the above mentioned template-based methods, utilized in
the reconstruction stage, are applied only to the magnitude
of the masked STFT coefficients, while phase is ignored.
Besides, they all consider a linear relationship between the
speech spectrum and the corresponding weight which associ-
ated with speech components. However, recent investigations
have demonstrated that taking into account the phase im-
proves the quality of enhanced speech [9]. Besides, linear
model may not capture the nonlinear property of speech.
This work develops a two-stage method for speech en-
hancement. In the first stage, a binary mask is estimated using
power spectral density (PSD). The masked complex-valued
STFT coefficients are regarded as an incomplete spectra. In
the second stage, a complex-valued Gaussian process latent
variable model (CGPLVM) is proposed to reconstruct the in-
complete spectra in a complex domain. The major contribu-
tions of this work are summarized as follows. (1) The speech
spectra across time frames are modeled as a proper complex
Gaussian process (GP), which provides a nonlinear mapping
from a latent space which associated with speech components
to speech space. (2) Rather than estimating the phase and
magnitude separately, the complex-valued STFT coefficients
are directly estimated that modifies both the magnitude and
the phase of a noisy speech. (3) Our CGPLVM integrates
phase estimation into a speech enhancement procedure, sig-
nificantly improving the quality of the enhanced speech.

2. BACKGROUND

Template-based speech enhancement methods [10, 11, 12]
tend to process a signal in the T-F domain. A time-domain
noisy signal 2(n) € R can be modeled as a clean signal
s(n) € R that is contaminated by a noise signal n(n) €
R,n € Z* in the STFT domain, as follows.

| X (f,1)] edex(£it) — 1S(f,1)] eles(ft) | IN(f,t)| eden (1)
ey
where f and ¢ are the indices of the frequency bin and the
frame, respectively, j = v/—1, |-| denotes the magnitude and
. denotes the phase angle.
In speech enhancement, T-F masking is a powerful way to
reduce the effects of noise [13, 14]. Let M denote a mask, the
masked spectra can be computed as S = M © |X| € RF*T,
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where © denotes an element-wise product. NMF-based and
SR-based methods [6, 15, 5] generally assume that a spec-
trogram of speech can be reconstructed using a pre-trained
basis matrix W and a corresponding activation matrix H.
The estimated activation matrix can be obtained as follows.
H= arg min HS WHH where W € R¥*X s the basis

matrix; H € REXT ig the estimated activation matrix, and K
is the number of basis vectors.

After obtaining the estimated activation matrix, the mag-
nitude spectra of an instance of speech can be approximated
as S = WH. To resynthesize the time-domain signal, the
phase information must be recovered. In various works [5, 6,
8], the STFT coefficient of a speech signal is approximated as

S(f,t) = S(f,t) = S(f, t)elex (1) @

Notably, px (f,t) is the phase of the noisy signal. However,
recent work has established that the resynthesized signal is
inconsistent [9], meaning that STET(iSTFT(S)) # S.

The literature includes many template-based methods for
dealing with the problem of inconsistency, which involves
phase estimation [16, 17, 18]. Kameoka et al. [16] proposed
a complex NMF, which assumes that a complex-valued STFT
coefficient is the product of two non-negative parameters with
a phase term. Magron et al. [17] further considered a phase
constraint in the framework of complex NMF [16] to improve
its performance. In summary, two points are worthy of note:
(1) the magnitude and phase are estimated separately in the
real domain, and (2) only a linear model is considered. In this
work, we make the first attempt to investigate the feasibility
and applicability of nonlinear model, named GPLVM, for re-
constructing the magnitude spectra. We then extend GPLVM
to reconstruct directly complex-valued STFT coefficients that
contain both magnitude and phase information.

3. PROPOSED METHODS

Based on the work of Wang et al. [8], this work presents a
two-stage method for enhancing a noisy signal, which com-
prises a statistical model-based binary mask [19] and a non-
linear complex-valued model for storing the pattern of speech.

Unlike in previous works [5, 6], in which prior knowledge
about the instance of speech and noise is used to generate a
mask, in this work, a binary mask is estimated without train-
ing. Noise PSD is utilized to determine whether an STFT bin
is reliable or not. The masked spectra S are then regarded as
incomplete observations. Fig. 1 displays an example of how
speech is estimated using a binary mask. The goal here is to
reconstruct speech spectra from the incomplete observations.

3.1. GPLVM-based reconstruction of STFT magnitude

First, we investigate the feasibility and applicability of
nonlinear probabilistic model, named GPLVM [20], for
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Fig. 1: Examples of (a) clean speech, (b) noisy speech, (c)
binary mask, and (d) incomplete observation. The speech is
mixed with white noise at an SNR of 5dB.

speech enhancement. In this subsection, the reconstruc-
tion is performed on magnitude spectrum. Each frequency
band is independently regarded as a GP. GPLVM [20] is
utilized to learn the pattern of clean speech. Given train-
ing frames Y = [y1,...,yor] € RI*?T which com-
prise () clean speech spectrograms, each frequency band
Y; € R9T canbe modelled as Y ¢ = g;(Z)+e€y, where Z =
(1, ...,z07] € REXQT with K < F, is the corresponding
low-dimensional latent points, and € ~ A(0, 37'I). The
mappings gf, f = 1,...,F are drawn from an independent
GP,i.e. gf(Z) ~ N(0,K), where K is a covariance matrix in
which the element of the n-th row and the m-th column is de-
termined by a kernel function, [K],., = k(2zn,2m), n,m €
{1,...,QT}. For example, a radial basis function (RBF)
kernel is defined as k(zn, 2, ) = 01 exp(—02 [|zn — zm|?),
where § = {6,62} are hyperparameters in the model. The
marginal likelihood of Y can be calculated as

F
[IV(Y 0. K+ 57'T) 3)
=1

p(Y|Z) =

The hyperparameters 6 and the low-dimensional latent points
Z can be estimated by maximizing Eq. (3) by the gradient de-
scend based method [20]. Accordingly, the spectral patterns
of the clean speech are then stored in the kernel.

__ Given estimation of f and Z, an incomplete observations
S can be reconstructed using the standard GP prediction [21]
with its low-dimensional latent point. The reconstructed spec-
trogram is then combined with the noisy phase.
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Table 1: SSNR of proposed methods and baselines with white
noise at various SNR levels

SNR level (dB) 5 10 15 20

SR [3] 468 605 697 7.60
NMF [6] 449 670 839 9.32
LinNMF [4] 5.60 807 10.11 11.84
denseNMF [4] 5.61 8.10 10.08 11.77
GPLVM 5.63 812 10.10 11.87
CGPLVM 593 842 1048 13.06

3.2. Phase-incorporating reconstruction of complex-valued

STEFT coefficient

To incorporate the estimation of phase into the reconstruc-
tion, rather than modifying only the magnitude spectra, the
complex-valued STFT coefficients are directly enhanced
from the masked spectra S = M © X € CF*T. Let
U = [uy,...,ugr|" € CF*T be the complex-valued STFT
coefficients of () training data from clean speech signals.
Similar to GPLVM, each frequency band U can be viewed
as a complex GP. To learn the nonlinear mapping between
the complex-valued spectrum and its low-dimensional latent
point, this work proposes the CGPLVM.

Uthf(V)+ef “)

where V. = [vl,...,vQT]T € CExQT, es has a complex

Gaussian distribution CA'(0,3711,0) and hy, f = 1,..., F
are drawn from an independent proper complex GP, so
hy := hp(V) ~ CN(0,K,,0). K, is a kernel matrix that
expresses the relationships among the complex-valued latent
points v, ..., vor. Based on the work of Boloix-Tortosa et
al. [22], a kernel that is used in a complex GP framework can
be defined as kc(Vn, Vin) = krr(Vi, Vin) + k5 (Vi Vi) +
J(krj(Vin, V) — krj(Vi, Vin)), where k., k;; and k,; are
real kernel functions. In this work, k.., k;; are chosen as
the sum of an exponentiated quadratic kernel and a bias term,
while k,; is set to zero. Like that in GPLVM, the hyperpa-
rameters and the low-dimensional latent points can be learned
by maximizing the log marginal likelihood.

Inp(U| V)

F

[T /o011y )ohy | V)i
= )
= -—FQTInm — Fln|K, + 81|

— trace((K. + g~ 1)~ tuut)

By introducing the low-dimensional latent points V
that are associated with the training spectra U and the ¢-
th frame S, from the masked spectra S, the corresponding
low-dimensional latent point ¥; can be obtained by solving
the following equation,

Vi = argmax Inp(U,s; | V,¥;) ©)
Vi
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Fig. 2: PESQs of proposed methods and baselines with white
noise at various SNR levels.

The ¢-th spectrum s; can be reconstructed using a predic-
tive approach, which is given by §; = UH(K .+ 8711)71k,
where k = [k.(v1, Vi), ke(Va, Vi), oo, ke(Vvor, V)] T

4. EXPERIMENTAL RESULTS

4.1. Experimental settings and performance metrics

The performances of the proposed methods when applied
to the CHTTL database [23], were evaluated. The CHTTL
database includes 100 speakers (50 males and 50 females)
who said the numbers zero to nine consecutively in Mandarin
only once. Each complete utterance lasted 5-6 seconds, and
was sampled at 8 kHz. In the experiments herein, 60 speakers
(30 males and 30 females) were randomly selected from the
CHTTL database. Data from ten (five males and five females)
of them were used as training data. Various types of noise
including stationary (white) and non-stationary noise (babble
and factory) were added with SNR levels of 5, 10, 15 and 20
dB to the utterances of the remaining 50 speakers.

The spectrograms were generated using a 512-points
STFT with Hamming windows to transform the speech into
the time-frequency domain (F' = 257). The windows were
shifted relative to each other by one half of the window length
to cause them to overlap. The performances of the tested en-
hancement methods were evaluated in terms of segmental
SNR (SSNR) [1]. The perceptual evaluation of speech qual-
ity (PESQ) [24] was used to measure the quality of speech.

The performances of the proposed methods were com-
pared with the following two kinds of the baselines. 1) The
two-stage reconstructed methods (SR [5] and NMF [6]), and
2) The state-of-the-art template-based methods (LinNMF [4]
and denseNMF [4]). The considered baselines were operated
on magnitude spectra and the noisy phase was used to resyn-
thesize the estimated speech signal. The experimental set-
tings that were used in baselines are the same as those of their
works.

Notably, the two-stage methods [5, 6] use a DNN-based
mask to extract speech components. To ensure a fair compari-



Table 2: SSNR of proposed methods and baselines with bab-
ble noise at various SNR levels

SNR level (dB) 5 10 15 20
SR [5] 226 423 581 690
NMF [6] 250 468 643  8.05
LinNMF [4] 251 464 661 921
denseNMF [4] 238 442 625 827
GPLVM 283 555 778 986
CGPLVM 300 596 849 10.39

Table 3: SSNR of proposed methods and baselines with fac-
tory noise at various SNR levels

SNR level (dB) 5 10 15 20

SR [5] 392 561 678 7.54
NMF [6] 384 590 723 843
LinNMF [4] 388 643 890 10.73
denseNMF [4] 3.70 6.22 850 10.49
GPLVM 478 740 928 10.77
CGPLVM 511 7.77 985 11.32

son, the statistical model-based mask was utilized to generate
the masked spectra.

4.2. Results obtained with stationary noise

The proposed methods (GPLVM and CGPLVM) were com-
pared with the baselines in terms of SSNR. Table 1 presents
the experimental results obtained with white noise. The latent
dimension K of the proposed methods was set to 30. Ex-
perimental results reveal that the CGPLVM outperforms the
baselines for various SNR levels.

To demonstrate the superiority of the proposed CGPLVM,
which jointly estimates the magnitude and phase of a speech,
the PESQs that were obtained using the proposed methods
and baselines were evaluated. The results in Fig. 2 demon-
strate that the CGPLVM achieves a better PESQ than the other
methods which do not consider the phase information of a
speech at any SNR level. The enhanced audio samples that are
obtained using the proposed methods are available online.!

4.3. Results obtained with non-stationary noise

SSNRs of the proposed methods and baselines with babble
and factory noise with different SNR levels are presented in
Tables 2 and 3. From Tables 2 and 3, it also can be seen
that the proposed methods outperform the other methods with
non-stationary noise at various SNR levels.

Figs. 3 and 4 present the PESQs of the proposed meth-
ods and baselines with babble and factory noise, respectively.

!'The audio samples are available online at https:/goo.gl/WFChTd
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Fig. 3: PESQs of proposed methods and baselines with bab-
ble noise at various SNR levels.
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Fig. 4: PESQs of proposed methods and baselines with fac-
tory noise at various SNR levels.

Figs. 3 and 4 indicate that, over the whole SNR range con-
sidered, the proposed phase-incorporating model (CGPLVM)
still achieves a better PESQ with non-stationary noise.

5. CONCLUSIONS

This paper develops two latent variable model based meth-
ods for speech enhancement. The potential of using a non-
linear model and a phase-incorporating nonlinear model for
reconstructing a masked speech was studied. Unlike state-of-
the-art template-based methods, the proposed method herein
directly enhances the complex-valued STFT coefficients of a
speech signal in the complex domain, rather than separately
enhancing the magnitude and phase in the real domain. Ad-
ditionally, instead of using a dictionary, the method uses a
kernel matrix, which specifies a GP, to store the clean speech
patterns that provides a nonlinear relationship between the
spectra and its corresponding low-dimensional latent points.
Experimental results indicate that the proposed methods have
significantly higher SSNR and PESQ values than baseline
methods. In the future, we would like to extend the current
framework to deeper architectures that may further boost its
performance.
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