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ABSTRACT

Human speech is usually distorted by room reverberation.
These corruptions degrade speech quality and intelligibility,
especially under a long reverberation time, and they also pose
a serious problem for many speech-related applications such
as automatic speech recognition. In this paper, we propose
a supervised speech dereverberation algorithm that models
late reverberation using a recurrent neural network (RNN)
with long short-term memory (LSTM). By taking advantage
of LSTM’s ability to capture a long history, late reverbera-
tion can be effectively removed by the proposed approach.
Systematic evaluations indicate that our approach improves
the quality of reverberant speech in a wide range of rever-
berant conditions. Moreover, the proposed system is a causal
system, which can be applied in real-time applications.

Index Terms— speech dereverberation, long short-term
memory, recurrent neural networks, supervised speech en-
hancement

1. INTRODUCTION

Reverberation is an acoustic phenomenon caused by the re-
flections of sound waves in a room. Strong reverberation can
significantly degrade speech intelligibility and sound quality
for human listeners [1]. It has been shown that the early part
of the reverberation, the reflections arriving within 50 ms af-
ter the direct sound, is actually beneficial for intelligibility. It
is the late reverberation, which arrives 50 ms after the direct
sound, degrades the speech intelligibility [2]. Reverberation
can also impose challenges for machine systems involving
speech processing. For example, the performance of far-field
automatic speech recognition (ASR) systems often suffer due
to the existence of the room reverberation [3]. Reducing the
effect of reverberation has been an important topic of speech
processing.
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Many single-channel dereverberation algorithms have
been proposed in the past decays. Lebart et al., for exam-
ple, propose a spectral subtraction algorithm to suppress late
reverberation by assuming an exponential decay model of
reverberation [4]. Wu and Wang propose a two-stage algo-
rithm which cancels early reflections with an inverse filter and
reduces late reverberation based on spectral subtraction [5].
Long-term linear prediction based dereverberation methods
[6, 7] have been shown to be very effective for late rever-
beration suppression. In these algorithms, the frequency-
dependent linear prediction filters are first obtained based
on a number of history frames using the weighted predic-
tion error (WPE) minimization. The enhanced signal is then
obtained by subtracting the filtered signal from the original
reverberant signal in the subband domain. López et al. [8]
propose to estimate the amplitude of late reverberation by
modeling it as a sparse linear combination of the amplitudes
of past frames, and then solve the problem using Lasso. Good
dereverberation performance is achieved.

Recently, many supervised speech enhancement algo-
rithms are proposed to perform dereverberation and have
achieved substantial improvements over the traditional meth-
ods. In [9], Han et al. propose to learn a spectral mapping
function from the log magnitude spectrum of reverberant
speech to that of anechoic speech by using a deep neural
network (DNN). Wu et al. [10] point out the importance
of reverberation time dependent parameters during training
a DNN-based dereverberation system. Then they propose a
reverberation-time-aware approach to remove reverberation,
which outperforms Han et al.’s approach. In Weninger et
al.’s robust speech recognition system [11], dereverberation
is performed by using a deep bi-directional recurrent neu-
ral network (RNN) with long short-term memory (LSTM).
Taking the phase into account, Williamson and Wang [12]
propose to estimate a complex ideal ratio mask (cIRM) by
using a DNN to remove reverberation in the complex domain.
As the joint enhancement of magnitude and phase spectrum,
better results are reported in their study. Comparing to the
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traditional methods mentioned above, these supervised meth-
ods do not explicitly estimate either the early reflections or
the late reverberation, but attempt to directly construct the
dry speech from the reverberant observation.

One critical limitation of those supervised algorithms,
however, is that they are non-causal since the information
from the future is used in the processing. In this paper, we
propose a causal supervised dereverberation algorithm. In-
stead of deriving the dry speech directly, a uni-directional
LSTM RNN [13] is utilized to estimate late reverberation,
which is then subtracted from the original signal to enhance
the reverberant speech.

The rest of the paper is organized as follows. We will
describe our proposed algorithm in details in the next section.
The experimental setup and evaluation results are presented
in Section 3 and Section 4, respectively. We conclude this
paper in Section 5.

2. ALGORITHM DESCRIPTION

2.1. Problem formulation

Let s(t) and h(t) denote anechoic speech and room impulse
response (RIR), respectively. The reverberant speech y(t) is
modelled by

y(t) = s(t) ∗ h(t) (1)

where ∗ denotes a convolution operation. According to the ar-
rival time of the signal, the reverberant speech can be divided
into two components, namely, direct sound plus early reflec-
tions and late reverberation. By writing the RIR into two por-
tions, hde and hl, the reverberant speech can be represented
by

y(t) = s(t) ∗ hde(t) + s(t) ∗ hl = yde(t) + yl(t) (2)

The objective of this study is to remove the late reverberation
component yl(t) from the corresponding reverberant speech
y(t).

2.2. Features and training target

Given a time-domain signal, we divide it into frames by using
a 32 ms Hamming window with 8 ms window shift. 512-point
fast Fourier transformation (FFT) is applied to each frame,
which results in 257 frequency bins. In our study, the mag-
nitude spectrum of the reverberant speech is directly used as
features. To compress the dynamic range of the values, a cu-
bic root compression is applied. All the features are normal-
ized to zero mean and unit variance by using the statistics of
the training data. We use Y (m) to denote the normalized
compressed magnitude features at time frame m, which is a
257-dimension vector. Then, our proposed system takes the
following sequential feature vectors as the input,

Y = {Y (1),Y (2), ...,Y (N)} (3)

where N is the total number of frames in the utterance. At
each time step, the features of one frame are fed to the system.
In other words, no context window is employed.

As for the training target of the proposed system, at time
step t, one choice is to use the late reverberation in the cor-
responding time frame as the target. During testing, after
obtaining the estimation of late reverberation, we can utilize
techniques like spectral subtraction to remove the late rever-
beration part. In this paper, however, the magnitude spectrum
of the direct sound plus early reflections is used as the training
target to simplify the processing. Similar to the input features,
a cubic root operation is also applied to compress the values.
Let Yde(m) denote the compressed magnitude spectrum of
the direct sound plus early reflections at time frame m. The
training target can be expressed by the following sequential
vectors,

Yde = {Yde(1),Yde(2), ...,Yde(N)} (4)

It should be pointed out that different from the input features,
we do not perform mean and variance normalization on the
training target.

2.3. Network architecture

It is necessary to exploit long-term history information when
we perform dereverberation. With the internal memory, RNN
is designed to model sequential data with long-term depen-
dencies. However, gradient vanishing and exploding issues
make a vanilla RNN hard to optimize. By introducing a mem-
ory cell and employing gate mechanism to control the in-
formation flow, LSTM RNN has shown powerful ability to
model long range dependencies embedded in the sequential
data. Consequently, in order to capture the long history in the
past observed reverberant speech, we utilize LSTM RNN to
predict late reverberation. The LSTM block used in this study
is defined by the following equations,

it = sigmoid(Wiixt +Whiht−1 + bi)

ft = sigmoid(Wifxt +Whfht−1 + bf )

gt = tanh(Wigxt +Whght−1 + bg)

ot = sigmoid(Wioxt +Whoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

(5)

where it, ft, gt, ot are the input, forget, cell, and output gates,
respectively; at time step t, ht is the hidden state; ct is the
memory cell state; xt is the input of the first layer or the hid-
den state of the previous layer; W ′s, b′s denote the weights
and biases in the linear transformations, respectively; ◦ de-
notes the element-wise multiplication.

Fig. 1 shows the system diagram of the proposed algo-
rithm. We present three time steps of the system for better
understanding. The input features of each time step are di-
rectly fed to the LSTM RNN with two hidden layers. A linear

5435



Fig. 1: System diagram of the proposed algorithm. “REVB” denotes the compressed magnitude spectrum of the reverberant
speech; “DSER” denotes the compressed magnitude spectrum of the direct sound plus early reflections.

layer is on top of the LSTM RNN to project the hidden states
of the last layer of LSTM RNN to the late reverberation. We
use rectified linear units (ReLU) [14] after the linear projec-
tion layer to guarantee the positive estimation of the late re-
verberation. Then, we subtract the late reverberation predic-
tion from the magnitude spectrum of the reverberant speech to
obtain the magnitude spectrum of the direct sound plus early
reflections as the system output. It should be pointed out that
the values of the magnitude spectra are compressed by cubic
root function. In other words, the spectral subtraction is per-
formed in a cubic root compressed space. Although we are
not explicitly using the late reverberation as the training tar-
get, the system forces the LSTM RNN to learn to estimate the
late reverberation. If we only look at the input and the out-
put of the proposed system and consider it as a black box, it
achieves a frame-level sequence mapping from the magnitude
spectrum of the reverberant speech to that of the direct sound
plus early reflections, which is similar to perform a sequential
spectral mapping. However, the internal mechanism is totally
different from the spectral mapping approach and no context
window is needed.

3. EXPERIMENTAL SETUP

The proposed system is evaluated by using the IEEE corpus
[15] spoken by a female speaker. There are 72 phonetically
balanced lists of sentences in the corpus, with 10 sentences
in each list. In our experiments, we select sentences from
List 1-50, List 67-72 and List 51-60 to construct training data,
validation data and test data, respectively. We simulate a re-
verberant room of size 10 m × 7 m × 3 m. Different RIRs
are generated by placing an omnidirectional microphone at
a fixed position while randomly choosing the position of the
speaker. In addition, the distance between the receiver (mi-
crophone) and the speaker is set to 2 m. An RIR generator
[16] is utilized to produce different RIRs in the room, which
employs the image method [17]. In the study, a wide range of
reverberation times are investigated, from 0.3 s to 1.0 s, with
an increment of 0.1 s. Under each T60, 10 different RIRs

are generated for training and validation; 1 RIR is generated
for testing. As a consequence, there are 500×8 (T60s)×10
(RIRs) = 40,000 reverberant utterances in the training set;
50×8 (T60s)×10 (RIRs) = 4,000 reverberant utterances in the
validation set; 100×8 (T60s)×1 (RIR) = 800 reverberant ut-
terances in the test set. It should be pointed out that both the
RIRs and sentences used for testing are unseen during train-
ing/validation. We denote this test set as “Test A”.

In order to test whether the trained model can generalize
to other rooms, another set of RIRs are also generated for
testing. Three RIRs with the values of T60 at 0.3 s, 0.6 s and
0.9 s are generated in a reverberant room of size 8m×9m×
2.5 m. The distance between the receiver and the speaker
is 1.8 m. Therefore, we have another test set with 100×3
(T60s)×1 (RIR) = 300 reverberant utterances to process. This
test set is denoted by “Test B”.

In the proposed system, we are using a LSTM RNN with
two hidden layers and 512 units in each layer. In the exper-
iments, we find that stacking more LSTM layers can only
bring very slightly performance improvements for our task.
Considering the system complexity and the size of training
data, two LSTM layers are employed in the current system.
To avoid overfitting issue during training, we apply dropout
with 0.3 dropout rate between the two hidden layers of the
LSTM RNN [18]. Furthermore, we also utilize the weight-
dropped technique [19] to mitigate overfitting across the re-
current connections. The dropout rate for weight-dropped
LSTM is set to 0.5. Instead of truncating the utterance with
fixed length sequence, we use a whole utterance as a sequence
and perform batch processing with variable length sequences.
The batch size is 8 in our experiments. The parameters are
initialized by using orthogonal initialization method [20]. We
train the system by using Adam [21] optimizer and mean
squared error (MSE) loss. The time-domain signal is resyn-
thesized by using the reverberant phase.
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PESQ SNRfw (dB)
T60 (s) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg.

unprocessed 2.911 2.708 2.346 2.296 2.098 1.996 1.957 1.825 2.267 20.30 15.67 10.87 9.35 7.83 6.63 5.58 4.82 10.13
WPE 3.032 2.941 2.541 2.601 2.302 2.111 2.088 1.906 2.440 15.91 15.59 14.38 13.59 11.68 9.59 8.69 7.49 12.12

López et al. 2.733 2.762 2.485 2.531 2.351 2.317 2.331 2.136 2.456 6.39 6.56 6.14 6.25 6.10 6.15 5.96 5.60 6.14
proposed 3.522 3.390 3.063 3.036 2.849 2.696 2.711 2.546 2.977 21.14 18.46 16.72 16.01 15.35 13.39 13.55 12.72 15.92

Table 1: Average PESQ and SNRfw scores on Test A. Boldface number indicates the best performance.

PESQ SNRfw (dB)
T60 (s) 0.3 0.6 0.9 Avg. 0.3 0.6 0.9 Avg.

unprocessed 2.760 2.230 2.004 2.331 18.06 9.00 5.49 10.85
WPE 2.842 2.542 2.094 2.493 15.59 13.05 8.66 12.43

López et al. 2.697 2.527 2.323 2.516 6.57 6.30 6.00 6.29
proposed 3.385 3.014 2.685 3.028 19.03 15.88 13.13 16.01

Table 2: Average PESQ and SNRfw scores on Test B. Bold-
face number indicates the best performance.

4. EVALUATION RESULTS

In this sudy, we utilize perceptual evaluation of speech quality
(PESQ) [22] (the value range is [-0.5, 4.5]) and the frequency-
weighted segmental signal-to-noise ratio (SNRfw) [23] to
evaluate the proposed approach. Since only late reverberation
is removed, the direct sound plus early reflections is used as
the reference signal. For both metrics, the higher number
indicates the better performance. We compare our approach
with two late reverberation suppression approaches, one is the
WPE approach 1 and the other is López et al.’s Lasso-based
dereverberation approach 2.

Table 1 and Table 2 list the average PESQ and SNRfw

scores on Test A set and Test B set, respectively. We firstly
compare the performance of the three approaches on Test A
set. In this set, a wide range of reverberant conditions are
investigated. Our proposed approach shows the best dere-
verberation performance under all the conditions in terms of
both PESQ and SNRfw values. Averagely, compared with the
reverberant speech, the enhanced speech improves the PESQ
score around 0.7, and the SNRfw nearly 6 dB, indicating
the effectiveness of our approach to perform dereverberation.
According to the PESQ scores, both the WPE approach and
López et al.’s approach can provide limited improvement for
the sound quality. López et al.’s approach becomes better
when dealing with longer reverberation times in terms of the
PESQ scores, however, it performs very poorly under the
SNRfw measurement. Similar performance trends can be
observed on Test B set. As we mentioned in Section 3, the
main purpose of the experiments on Test B is to answer the
question whether the model trained in one room of fixed size
can be generalized to other rooms. If it fails, the applications
of the proposed approach will be very limited. The PESQ
and SNRfw scores in Table 2 demonstrate that our trained

1The software is available at http://www.kecl.ntt.co.jp/
icl/signal/wpe/

2We are using the software provided by Nicolás López in the experiments.

dereverberation model can generalize very well to untrained
room conditions. Significant improvements over the WPE
approach and López et al.’s approach are observed.

(a) reverberant speech (b) enhanced speech

Fig. 2: (Color online) Example spectrograms of reverberant
speech (T60 = 1.0 s) and the corresponding enhanced speech.

To illustrate the effectiveness of the proposed system to
suppress the late reverberation, one enhancement example is
given in Fig. 2. The sentence is randomly chosen from Test
A with the most severe reverberant condition (T60 is 1.0 s).
The content of the selected sentence is “We dress to suit the
weather of most days.” Fig. 2(a) presents the spectrogram
of the reverberant speech. The corresponding spectrogram of
the enhanced speech processed by our approach is shown in
Fig. 2(b). Obviously, most smearing effects caused by late
reverberation have been removed and the speech structures in
the T-F representation are recovered. This demonstrates that
late reverberation can be largely suppressed by our proposed
approach under adverse reverberant conditions with long re-
verberation time.

5. CONCLUSION

In this paper, we have proposed a LSTM based system to per-
form late reverberation suppression. By leveraging the capac-
ity of recurrent connections to model the long-term depen-
dencies in reverberant speech, late reverberation is well esti-
mated and removed. Moreover, the causality of our system
makes it possible to deploy in real-time applications. System-
atic evaluations under a wide range of reverberant conditions
have shown that late reverberation is better removed by the
proposed approach than other related methods.
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