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ABSTRACT

Exemplar-based (or Corpus-based) speech enhancement al-
gorithms have great potential but are typically slow due to
needing to search through the entire corpus. The proper-
ties of speech can be exploited to improve these algorithms.
Firstly, a corpus can be clustered by a phonetic ordering into
a search tree which can be used to find a best matching seg-
ment. This dramatically reduces the search space, reducing
the time complexity of searching a corpus of n segments from
O(n) to O(log(n)). Secondly, clustering can be used to give
a lossy compression of a speech corpus by replacing origi-
nal segments with codewords. These techniques are shown in
comparison with sequential search and non-compressed cor-
pora using a simple speech enhancement algorithm. A com-
bination of these techniques for a corpus of a quarter of WSJ0
results in a speedup of approximately 3000x.

Index Terms— speech enhancement, exemplar-based,
real-time, embedded, clustering

1. INTRODUCTION

Speech enhancement algorithms that do not rely on estima-
tion of noise have great potential in real-world applications
due to the diversity and unpredictability of noise. One issue
is that in a short time frame noise can be very similar to some
speech sounds, which makes real-world speech enhancement
particularly challenging for more traditional frame-based so-
lutions which tend to be limited in quality unless they model
properties of both the speech and the noise. Often these meth-
ods face challenges with quickly varying noise because of a
reliance on a stationary estimation of noise.

Examples of frame-based solutions include spectral sub-
traction [1], Wiener filtering [2][3], MMSE estimators [4],
and hidden Markov model based approaches [5].

On the other hand, segment-based algorithms, which take
multiple frames at a time, have the advantage of greater dis-
crimination between speech and noise. Healy et al. [6] aims
to estimate an ideal mask to filter the speech from a noisy sig-
nal and does so by using a deep neural network to estimate
the mask. This work is promising and, while still speaker-
dependent, has moved to generalize to unseen noise samples
and noise types [7] [8].

1.1. Exemplar-based matching

The exemplar-based approach uses a similarity measure to se-
lect examples of speech features from a learned corpus [9] and
is typically segment-based. A variety of methods exist, using
different similarity measures, including non-negative matrix
factorization (NMF) [10] [11], maximum posteriori probabil-
ity [12] or likelihood [13], and maximum correlation as used
in DNNs [14] and sentence-based matching [15].

Exemplar-based speech enhancement algorithms can,
however, be too slow to use in real-time systems, due to the
requirement to search an entire corpus and compare each
corpus segment with the test segment. Additionally, to ensure
that the corpus is representative of all possible speech sounds
belonging to the language for which it is trained, often the
corpus must be composed of a large amount of speech. This
does, however, result in redundancy within the corpus, with
many of the segments being similar to each other.

In this paper we present a system to resolve both the lack
of speed in exemplar-based methods and the large working
memory requirements of representative corpora. Resolving
these issues would make these algorithms feasible on a wide
range of hardware, including embedded platforms. A previ-
ous system aiming for fast searching came close to, but not
quite, real-time [16] - this approach is, however, unlikely to
scale to lower-powered hardware. Another system for HMM
exemplar-based matching used a form of clustering for hierar-
chical searching which resulted in a speedup of approximately
8x and reduced the size of the exemplars in the corpus [17].

This system is the subject of ongoing research and is rel-
atively simple; we present it here to demonstrate our concept.
This method could be used in more sophisticated exemplar-
based speech enhancement algorithms such as wide matching
[15]. Wide matching aims, for a test utterance, to find a chain
of fixed length matching segments from the corpus that maxi-
mally utilizes the short and long term lingua-acoustic context
of the speech. This approach was found to yield good results
without any estimation of noise.

Another application of these concepts would be to facil-
itate the incorporation of an exemplar-based algorithm into a
learning ensemble. Segmental exemplar-based algorithms are
significantly distinct from other approaches, so the inclusion
of the algorithm in an ensemble-based deep-learning system
ought to increase the output quality of the system[18].
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1.2. Distance measure

The distance measure (or conversely, similarity measure) that
is used by the system to determine the distance between a test
segment and a corpus segment should be acoustically mean-
ingful, that is, the more similar two segments sound, the lower
their distance should be. Ideally the distance measure should
be invariant to the magnitude of the signal; however, the speed
of the signal is now considered to be relatively insignificant,
as recently discovered in DNN studies [19].

Common distance measures, City Block distance and Eu-
clidean distance are not computationally complex but are vari-
ant to magnitude. Pearson’s distance is invariant to volume
and so is a possibility. Zero-mean Normalised Correlation
Coefficient (ZNCC) is invariant to volume and it has been
demonstrated experimentally and mathematically that with
this measure of similarity, as the length of a segment in-
creases, the effect of independent additive noise on the cor-
relation between the underlying speech and a corpus segment
(and thus the correlation between the noisy segment and a
corpus segment) tends to zero [15]. ZNCC is expressed as:

R(xt±L, sτ±L) =∑L
l=−L[xt+l − µ(xt±L)]T[sτ+l − µ(sτ±L)]

|x̃t±L||̃sτ±L|
(1)

where xt±L represents a noisy fixed-length segment between
frame t − L and t + L and sτ±L represents a clean speech
segment between frame τ − L and τ + L, both segments’
frames being vectors in the spectrum domain. µ(xt±L) rep-
resents the mean frame vector for the noisy segment centering
on t (with µ(sτ±L) expressing the same for clean speech seg-
ment sτ±L) and |x̃t±L| represents the zero-mean Euclidean
norm for the noisy segment centering on t (with |̃sτ±L| ex-
pressing the same for clean speech segment sτ±L). On this
basis ZNCC was chosen as the distance measure for the sys-
tem to demonstrate the concept in this paper, but the concept
can be applied to other measures. From this we estimate the
underlying speech segment in the noisy signal (ŝt±L):

ŝt±L = argmax
sτ±L

R(xt±L, sτ±L) (2)

1.3. Challenges addressed

We present the following novel solutions to the issues pre-
sented so far. Both solutions can be carried out at the corpus
creation stage, prior to using the algorithm to enhance speech.

1.3.1. Real-time searching of corpora

Search-trees vastly reduce the search space of a search func-
tion; however, they can only be used with orderable data sets.
Segments of speech cannot naturally be ordered in any useful
manner. We seek to demonstrate that an approximate order
can be imposed on a set of speech segments by using clus-
tering. Our theory is that the cluster with the centroid that

matches best to the test segment will contain the best match-
ing segment, or will do so sufficiently often that the output of
a simple exemplar-based speech enhancement algorithm will
not be meaningfully degraded when utilizing this assumption.

1.3.2. Corpus compression

A corpus created from a smaller number of audio samples is
likely to be less representative of the whole range of human
speech than one created from a larger number, and thus less
likely to find a good fit for unseen speech. This results in a
large number of highly similar segments; so we propose us-
ing clustering to pick the most representative segments (code-
words), instead of relying on a large number of audio samples
to ensure good representation.

2. SPEECH ENHANCEMENT ALGORITHM

In our test system, as audio is received, the algorithm filters
noise by searching for a match for each noisy test segment
from a clean speech corpus. Taking a similar approach to
Baby et al. [10], the speech corpus maintains full spectrum
and mel representations of each segment, using the latter for
matching and the former as the speech estimate in a Wiener
filter, which filters the input signal [15].

3. SEARCH TREE-BASED MATCHING

3.1. Search method for the tree

The standard, linear mode of operation of the program is, for
each test segment, to search through the corpus and use the
best matching segment. Organizing the corpus segments into
a tree structure significantly reduces the search space. Each
node in the search tree is represented as a structure with a cen-
troid and a list of child nodes. The search starts with the root
node, which has an empty centroid and contains the first level
segments at its children this is the first node to be searched.
The search function compares each first level segment to the
test segment and selects the best matching segment, which
then becomes the search node. The new search nodes’s chil-
dren are compared to the test segment and the search function
continues until a node with no children is found. This is used
as the closest matching segment.

The standard, linear search is O(n) in time complexity,
where n is the number of segments in the corpus. The clus-
tered matching is at best O(log(n)) in time complexity.

3.2. Constructing a search tree

The search tree is constructed using an iterative clustering
function, used to approximate an ordering of the segments.

For clustering we used K-Means++, a variation of K-
Means which results in better initial estimates of the cen-
troids [20]. K-Means++ initially selects each centroid af-
ter the first preferring greater distances from already selected
centroids. This means that the initial centroid estimates are
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sufficiently spread out, but with sufficient randomness that the
initialization is not deterministic. This was chosen instead of
Hierarchical-Agglomerative (HA) clustering (which is more
typical when the size of clusters inherent in a data set is not
known a priori) as its quality in this application was not found
to be any worse than HA clustering, yet it scales much better
to large data sets.

A clean-speech segment in the frequency-domain is too
high-dimensional and sparse to be accurately clustered. A
lower-dimensional representation can be obtained with a mel
filter bank. Experimentation showed that filtering into 40 fre-
quency bins resulted in both good representation of speech
and good clustering.

To cluster the corpus into a search tree we first take all the
possible valid segments in the corpus and find initial centroids
for W clusters using the K-Means++ initialization, with W
being given as program input. Using those initial centroids
each segment is assigned to the closest centroid. Like the
search algorithm, ZNCC is used for the distance measure to
determine the closeness of two segments.

The distance between two segments for the purpose of
clustering is given by the following formula:

d(x,y) = 1−R(x,y) (3)

where d(x,y) is the distance between segment x and segment
y and R(x,y) is a function giving the ZNCC for segment x
and segment y, as per (1).

The next step is to recalculate the centroid based on the
cluster’s members. For cluster Cc composed of N segments
Cc = {S0,S1, ...,SN−1}, its centroid cc is calculated as:

cc,f,b =

∑N−1
i=0 Si,f,b
N

(4)

where cc,f,b is the power spectrum for centroid cc belonging
to cluster Cc, at frame f of the segment and frequency bin b
of the frame.

This is repeated until a stop condition is reached. At this
point, the centroids are set as the first level nodes. For each
cluster the segments belonging to it are taken and the clus-
tering process is repeated recursively until all the segments
belong to a node of no more than W segments.

One drawback to this method is the larger memory us-
age of the generated corpora. With a search tree, each pos-
sible segment is represented individually, meaning that many
frames are represented multiple times. Replacing leaf node
centroids with references to all the original segments would
resolve the issue, but the corpus would remain too large for
many applications as the full corpus would still need to be
retained. This issue will be addressed below.

4. CLUSTERING FOR CORPUS COMPRESSION

A solution to the issue of the size of a representative corpus
can be found in a lossy compression of the corpus using clus-
tering. Clustering can be used to determine groups of similar
segments. When using a sufficiently large number of clusters

the large set of training sentences can be approximated with
the centroids of these groups. These centroids (or codewords)
can then be used for search: either linear search which offers a
representative set of segments to search, or tree-based search
as described above.

For clustering for compression, Linde-Buzo-Gray initial-
ization was used to obtain initial estimates of the centroids
due to its ability to scale well with large data sets [21]. Eu-
clidean distance was used for the initial clustering, then once
the full number of codewords were found, the clusters were
refined using ZNCC as the distance measure. Additionally, it
was found that taking the medoids of the cluster, rather than
the centroids on the last pass of the algorithm resulted in out-
put that sounds more natural.

Combining corpus compression and search trees enables
the speech enhancement algorithm to use a corpus that is al-
most as representative as a large corpus and able to function
in real time on hardware without large amounts of memory.

5. EXPERIMENTAL STUDIES

5.1. Test Basis

Using our test system we can observe the reduction in time of
matching with these two methods, along with memory usage
and the associated quality tradeoffs.

Corpora were created using the WSJ0 training corpus us-
ing a search tree width W of 8 and a segment length L of 15.
A quarter of the WSJ0 corpus was taken as the training set
because, even with this, computing clustered and compressed
corpora took significant time on the Intel Xeon hardware that
was used to create the corpora and perform testing. Corpora
were also created from smaller subsets of the full WSJ0 train-
ing corpus (approximately a 128th, a 256th and a 512th of the
full set) to compare the benefits of compression over simply
using a small input sample set. These sizes were selected to
provide similar time factors to the compressed full sample set
corpora.

The test set consisted of 330 samples from the WSJ0 test-
ing set. Each sample was noised with the Aurora-4 set and
two highly non-stationary noises, resulting in 2640 test files
for each corpus to process. The Aurora-4 noised set were
noised at 5-15 SNR with the following noises: airport, bab-
ble, car, restaurant, street, train. The non-stationary noises (a
mobile phone polyphonic ringtone and a pop song) were used
to noise samples at 0 SNR. The test files were enhanced by the
algorithm then the STOI, PESQ and Segmental SNR (SSNR)
intelligibility measures were found for the output, shown in
Tables 1 and 2 averaged over all the samples for a given set.

5.2. Search-Tree based Enhancement

By clustering a corpus into a tree structure for search, the time
taken to enhance audio with comparable quality is drastically
reduced, as can be seen in Table 1.

The real time factor is a measure of how processing can
keep up with real-time. A factor of 100 means 100x slower
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Table 1: Comparison of enhancement using linear searching and tree-based searching with an uncompressed corpus created
from a quarter of the WSJ0 training set (’WSJ0 / 4’). The factor of real time is shown, with a larger number indicating that
enhancement took longer. The amount of working memory used is shown in megabytes.

Aurora 4 Non-stationary

Sample Set Search method Memory Real Time Factor STOI PESQ SSNR STOI PESQ SSNR

WSJ0 / 4 Linear 2070 100.3579 0.8749 2.4975 -0.5760 0.9017 2.5034 -0.7546
WSJ0 / 4 Tree-Based 40641 0.0490 0.8870 2.4503 -0.7055 0.9040 2.4138 -0.8606

Table 2: Comparison of enhancement using tree-based searching with corpora of various sizes. An uncompressed corpus
is compared with corpora of increasing numbers of codewords. An alternative to compression is shown with uncompressed
corpora composed of smaller subsets of WSJ0. The amount of working memory used is shown in megabytes.

Aurora 4 Non-stationary

# Codewords Sample Set Memory Real Time Factor STOI PESQ SSNR STOI PESQ SSNR

Uncompressed WSJ0 / 4 40641 0.0490 0.8870 2.4503 -0.7055 0.9040 2.4138 -0.8606
512 WSJ0 / 4 13 0.0375 0.8485 2.2333 -1.2578 0.8789 2.2557 -1.1678
1024 WSJ0 / 4 26 0.0383 0.8542 2.2533 -1.2913 0.8830 2.2730 -1.1425
2048 WSJ0 / 4 51 0.0388 0.8654 2.3155 -1.1827 0.8873 2.2895 -1.1499
4096 WSJ0 / 4 103 0.0396 0.8779 2.3536 -1.0160 0.8932 2.2981 -1.0847
Uncompressed WSJ0 / 512 311 0.0418 0.8545 2.2615 -1.1407 0.8866 2.2920 -1.0675
Uncompressed WSJ0 / 256 650 0.0423 0.8583 2.2962 -1.0834 0.8889 2.3224 -1.0240
Uncompressed WSJ0 / 128 1235 0.0434 0.8665 2.3173 -1.0234 0.8928 2.3352 -0.9897

than real-time.
The speed of matching is four orders of magnitude faster.

However, this comes at a cost. With the search-tree, the un-
compressed corpus takes up 40GB in working memory, in-
stead of just 2GB.

5.3. Corpus Compression

To reduce the memory required for the corpus, we have im-
plemented corpus compression into codewords.

In our most extreme case, compressing our quarter of
WSJ0 corpus to only 512 codewords results in a size of only
6MB, but with a noticable decline in quality across intelli-
gibility measures. As the number of codewords is increased
the quality increases, approaching that of the uncompressed
corpus at 4096 codewords with a reasonable size of 45MB.
However, at this point linear search exceeds real-time func-
tioning (1.69x). Generally speaking, compressing a larger
corpus gives better results than using a smaller, uncompressed
corpus.

5.4. Both Methods Combined

The results for testing carried out with tree-based searching
on compressed corpora are shown in Table 2, in compari-
son with small, uncompressed corpora. In terms of quality,
the 4096 codeword corpus is reasonably close to the uncom-
pressed corpus across the quality measures. In some quality
measures the smaller, uncompressed corpora beat the 4096

codeword corpus, but they do so at a cost to corpus size. It
is possible that going to 8192 codewords would give further
quality improvement, but the clustering will take on the order
of weeks.

With this combination of methods, the 4096 codeword
corpus satisfies several key requirements when being used
for clustered matching: it provides comparable quality to the
uncompressed corpus with linear matching, it is sufficiently
quick for real-time and its size in memory is a order of mag-
nitude smaller than the uncompressed corpus without a search
tree.

6. CONCLUSION

We have proposed an approach to searching a speech corpus,
which maintains representiveness while reducing the time to
enhance speech by four orders of magnitude, well under the
real-time barrier. When compression is used, this reduction in
processing time is also accompanied by a decrease in memory
usage of up to two orders of magnitude, when compared to the
uncompressed corpus without a search tree. These benefits
are obtained while retaining much of the output quality. Addi-
tionally, in quality and memory requirements, a larger, com-
pressed corpus performs better than simply using a smaller,
uncompressed corpus.

These improvements enable the searching of more repre-
sentative corpora in real-time, along with the possibility to use
more sophisticated enhancement in real-time applications and
low power embedded platforms to perform the enhancement.
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