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ABSTRACT

Several architectures have been proposed for deep neural network
(DNN)-based speech enhancement; however, these all utilize train-
ing targets related to the clean speech signal. In this paper, we evalu-
ate the performance of several training targets in a noise-prediction
DNN framework and compare the noise-prediction framework to
a conventional speech-prediction network. Objective test results
show that the mask-based targets are superior to the spectral mag-
nitude target in the noise-prediction framework. The results also
show that the best noise target outperforms the speech-prediction
network in terms of objective quality and intelligibility metrics in
seen noise conditions. The noise target is also competitive in unseen
noise conditions, performing slightly worse in objective quality, but
outperforming the speech-based target in objective intelligibility.

Index Terms— Speech enhancement, deep neural networks,
noise estimation, speech quality, speech intelligibility

1. INTRODUCTION

Speech enhancement, the task of improving the quality and intelli-
gibility of speech degraded by additive noise, has occupied the at-
tention of the signal processing community for several decades due
to its importance in applications such as personal and mobile com-
munications, design of hearing aids, and robust automatic speech
recognition (ASR) systems [1, 2].

While several algorithms including spectral subtraction [3],
Wiener filtering [1,4], and minimum mean-square error (MMSE) al-
gorithms [5–7] have previously been proposed for speech enhance-
ment, there has recently been a focus on the use of data-driven
methods. Techniques such as independent component analysis [8],
non-negative matrix factorization (NMF) [9, 10], and deep neural
networks (DNNs) [11, 12] have been used in speech enhancement
frameworks. DNNs, in particular, have shown good generalization
performance in several challenging acoustic conditions and can be
considered to provide state-of-the-art performance [13].

DNN-based speech enhancement models are regression models
that learn a mapping between noisy speech input features and a de-
sired target. Common paradigms include spectral mapping [11,14],
time-frequency (T-F) masking [12, 13, 15], and multitask learning
approaches [16, 17]. In the spectral mapping approach, the neu-
ral network predicts clean log power (or magnitude) spectra from
noisy log spectra. T-F masking approaches, such as the ideal binary
mask (IBM) and ideal ratio mask (IRM), use a neural network to
estimate a T-F weighting function from noisy input features, and
multitask learning approaches use a neural network to jointly esti-
mate clean log power spectra and other secondary features such as

mel-frequency cepstral coefficients (MFCCs), binary mask targets,
and signal-to-noise ratio (SNR).

One notable feature of all the aforementioned approaches is that
they utilize training targets based on clean speech features. Predict-
ing clean speech features of low-SNR signals can be difficult as
the speech may contain several noise-like, weak-energy segments
in which the speech signal is dominated by the noise. The clean
speech estimates in such segments are severely degraded as it is ex-
tremely challenging for a DNN to distinguish between speech and
noise since the noisy speech is very similar to the pure noise, and
the enhanced speech is consequently degraded. [16].

Recently, we proposed noise-prediction and time-domain sub-
traction framework as an alternate approach to DNN-based speech
enhancement [18]. The rationale behind the use of the noise predic-
tion approach was that learning a mapping between noisy speech
input and added noise target features should be easier than learning
a mapping between noisy speech input and the clean speech target
features when the noise dominates the speech signal. The unex-
pected and somewhat contradictory performance of this approach,
exhibiting stronger performance enhancing high-SNR signals than
enhancing low-SNR signals, as well as the poor performance in un-
seen noise, indicated that the use of more robust features would be
beneficial.

In this paper, we evaluate the performance of different train-
ing targets for DNN speech enhancement based on noise predic-
tion. Three training targets are examined, and their performance
is compared to that of a DNN trained with a conventional clean
speech target. The spectral mapping framework commonly referred
to as noise-aware training (NAT) [2,11] is used for this comparison.
The rest of the paper is organized as follows: the relation of this
work to others in the literature is discussed in the next section. An
overview of the proposed noise prediction systems is given in Sec-
tion 3, experiments are described in Section 4, results are presented
in Section 5, and conclusions are presented in Section 6.

2. RELATION TO PRIOR WORK

While there are several works investigating training targets for
DNN-based speech enhancement [11–17], these have all been based
on the prediction of clean speech and not noise targets. An in-
depth study of training targets for supervised speech separation was
conducted by Wang et al. [13]; however, this is the first study of
this type for noise-estimation neural networks. Several factors that
make the choice of training target for noise-estimation networks
different than in speech-estimation networks are discussed. This
work extends our initial work on the noise-prediction architecture
by investigating more robust training targets and comparing the re-
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Figure 1: Block diagram of the proposed systems.

sults obtained with these targets to those obtained with conventional
speech-estimation networks.

3. SYSTEM OVERVIEW

A block diagram of the proposed speech enhancement systems is
shown in Figure 1. In the training phase, input-output feature pairs
are extracted from the framed noisy speech and added noise sig-
nals respectively. Log magnitude spectral features are used as in-
put features. Three training targets, namely, log spectral magnitude
(LogFFT), Fourier magnitude spectrum mask (FFT-MASK), and a
target which we introduce, the noise ratio mask (NRM), are evalu-
ated.

1. Log Magnitude Spectrum
The magnitude of the short-time Fourier transform (STFT) spec-
trum of the noise is the natural choice for a training target in order
to reconstruct the added noise. The STFT magnitude spectrum has a
wide dynamic range, hence it is log compressed to reduce dynamic
range and ease the DNN training process.

2. Fourier Magnitude Spectrum Mask
In conventional (speech prediction) spectral mapping models, the
magnitude of the log spectral target is independent of the SNR of the
noisy input signal since the target is the clean speech spectrum. The
log spectral noise target, however, varies with SNR since the energy
of the added noise depends on the SNR of the noisy input signal.
The variation in the training target can be reduced by normalizing
the magnitude spectrum of the added noise with that of the noisy
speech signal. This gives the magnitude spectrum mask which is
defined as:

MFFT (t, ω) =
N(t, ω)

X(t, ω)
, (1)

where MFFT (t, ω) is the mask, and N(t, ω) and X(t, ω) are the
spectral magnitudes of the added-noise and noisy speech signals
respectively. FFT-MASK is unbounded above, hence we enforced
an upper bound to allow for more consistent training of the DNN.
An upper bound of 3 was chosen by examining the distribution of a
large random sample of the frequency bins.

3. Noise Ratio Mask
The noise ratio mask is defined as:

NRM(t, ω) =

(
N2(t, ω)

S2(t, ω) +N2(t, ω)

) 1
2

, (2)

where N2(t, ω) and S2(t, ω) represent the added-noise and speech
signal power spectral densities respectively. The NRM is a bounded
target with the range of [0,1], and can be seen to be equivalent to
the frequency domain square-root Wiener filter if the speech and
additive noise are assumed to be uncorrelated, and the noise is con-
sidered as the desired signal.

The network is trained by using the back-propagation algorithm
to minimize a mean-square error criterion. Network parameters are
updated using mini-batch stochastic gradient descent with momen-
tum. The error criterion is

E =
1

N

N∑
i=1

||T̂i(yi,Θ)−Ti||2 +
λ

2
||W||22 (3)

where yi is the input to the network, Θ = {W,b}, represents the
weights and biases in the network, T̂i(yi,Θ) is the output of the
network, Ti is the desired training target, λ is the regularization
coefficient, and N is the mini-batch size.

In the enhancement phase, log spectral features extracted from
noisy speech frames are fed into the trained network, and the net-
work computes an estimate of the desired training target vector.
For the log spectral target, LogFFT, a post-processing step fol-
lows [18, 19]. The magnitude spectrum estimates are used to com-
pute a time-frequency (T-F) mask which is computed as:

H(t, ω) = min


(
N̂2(t, ω)

X2(t, ω)

) 1
2

, 1

 , (4)

where N̂2(t, ω) and X2(t, ω) represent the estimated noise and
noisy speech signal power spectral densities respectively. The
mask, (4), is computed by normalizing the estimated added-noise
signal power by the noisy signal power and enforcing an upper
bound of unity. The mask thus represents a probability or confi-
dence that a bin contains noise. The enforced upper bound also
serves to prevent distortions that could be caused by estimation er-
rors. The new post-processed noise spectral estimates are then ob-
tained as:

N̂pp(t, ω) = H(t, ω)X(t, ω), (5)

where X(t, ω) is the noisy speech magnitude spectrum.
For the FFT-MASK and NRM targets, the noise spectral esti-

mates are obtained by multiplying the predicted mask by the mag-
nitude spectrum of the noisy speech as:

N̂(t, ω) = M̂TF (t, ω)X(t, ω) (6)

where MTF represents either the FFT-MASK or NRM targets.
The predicted spectra are combined with the noisy phase, and a
time-domain additive noise signal estimate is synthesized using the
overlap-add method [20]. A real-time system is implemented by
using a separate overlap-add buffer for the synthesis of the noisy
signal frames. The noise-free speech signal estimates are then ob-
tained by subtracting the added-noise signal estimate from the noisy
speech signal as shown in Figure 1.

4. EXPERIMENTS

All experiments were performed using recorded sentences from the
IEEE Corpus [21] included with the NOIZEUS database [1]. The
corpus is comprised of 72 lists, each of which contains 10 sentences.
Our noise source was a database of 100 non-speech sounds [22].
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Noise Description Noise Description
n1 Crowd n6 Water
n2 Machine n7 Wind
n3 Alarm/Siren n8 Bell
n4 Traffic/Car n9 Cough
n5 Animal n10 Clap

Table 1: Description of noise types used in testing.

Both the noise-free speech and noise recordings were resampled
to 8kHz. The training datasets were comprised of sentences taken
from lists 1 - 60, while testing was done with the 50 sentences from
lists 68 - 72.

Four training datasets were created by adding noise to the clean
speech sentences. The first three datasets, which include those
made for the NAT, FFT-MASK, and NRM models, were created
by adding 50 noise types to the chosen clean speech samples at six
SNR levels ranging from 20dB to -5dB in 5dB steps. The length of
each dataset was about 50 hours. A similar-length training dataset
was also created for the log magnitude spectral target. This dataset
was, however, created by added the noise at seven SNR levels rang-
ing from 20dB to -10dB in 5dB steps instead. The additional SNR
level was added to increase the number of training samples that had
a strong representation of the added-noise signals.

The speech signals were divided into 32ms frames and spectral
features extracted from the clean speech, noisy speech, and from the
added-noise signals were used to create input-output pairs for train-
ing the networks. Fourier analysis was performed using a Hamming
window. The proposed noise prediction models used log magnitude
spectral input features and targets as described in section 3, while
the NAT model used log power spectral features following the com-
mon practice.

To allow the networks to take advantage of temporal infor-
mation, each input vector included adjacent time frames. Conse-
quently, each input vector was constructed as

yi = [xi−l, . . . ,xi, . . . ,xi+l]. (7)

Five context frames, i.e. l = 5, for a total input length of eleven
frames, were used in the training and evaluation of the enhancement
systems.

The spectral input vectors for the NAT model were created by
appending an estimate of the noise in each utterance to the noisy sig-
nal spectral input (7). The noise estimate, n̂i, was fixed for each ut-
terance and was obtained by averaging the first five frames of noisy
speech log spectra as

n̂i = n̂ =
1

K

K∑
k=1

xk. (8)

The neural network models were all deep networks with three
hidden layers, each containing 2000 hidden nodes. The hidden lay-
ers of all the networks used the rectified linear unit (ReLU) activa-
tion functions [23, 24], and the output layers were linear. Weights
and biases of all the layers were initialized following the method
of He et al. [25], and the networks were trained using gradient de-
scent with momentum. The initial learning rate was set to 0.001 for
the first 10 epochs, and then decreased by 10% every subsequent
10 epochs. The value of the regularization coefficient was set to
0.0001, and the the momentum coefficient was 0.9. A mini-batch

size of 128 samples was used, and the networks were trained for
50 epochs. All networks were implemented and trained using the
TensorFlow library [26].

Testing was done using both seen and unseen noise types. Ten
noise types were used in each of the testing scenarios. In the seen
noise tests, each of the noise types used during the enhancement or
evaluation phase was one of the noise types used during the train-
ing phase. Conversely, in unseen noise testing, each of the noise
types used during the evaluation phase had not been used during the
training of the network. A description of the noise types is given in
Table 1.

Speech quality and intelligibility were objectively evaluated us-
ing the perceptual evaluation of speech quality (PESQ) [27] and
short-time objective intelligibility (STOI) [28] metrics respectively.
PESQ scores range from -0.5 to 4.5 while STOI scores range from
0 to 1. These measures have been shown to have high correlation
with subjective listening tests [29, 30] .

5. RESULTS

5.1. Evaluation in Seen Noise

The average PESQ scores for all the models in seen noise conditions
are shown in Table 2. The LogFFT and FFT-MASK models are sim-
ilar in performance, but FFT-MASK has a slight edge when average
SNR is above 5dB, and LogFFT has a slight advantage otherwise.
The overall average scores for both methods are basically equiva-
lent. The NRM performs better than both LogFFT and FFT-MASK
at all SNR levels and is the best of the noise prediction models in
enhancing speech quality.

The average STOI scores for all the models in seen noise con-
ditions are shown in Table 3. LogFFT performs better than FFT-
MASK at all input SNR levels and has a average STOI score that
is about 1.5% higher. The difference in performance between these
two training targets also increases as SNR reduces. The LogFFT
model also performs slightly better than the NRM model, however,
with an average STOI difference that is always less than 1% , the
difference can be seen to be insignificant. Considering both the
PESQ and STOI scores, the NRM model performs best in seen noise
conditions, followed by the LogFFT and then the FFT-MASK mod-
els.

SNR Noisy NAT LogFFT FFT-MASK NRM(dB)
20 3.027 3.506 3.686 3.720 3.765
15 2.701 3.394 3.481 3.511 3.590
10 2.380 3.265 3.240 3.258 3.380
5 2.072 3.114 2.982 2.975 3.134
0 1.791 2.932 2.708 2.665 2.845
-5 1.503 2.708 2.409 2.327 2.513

AVG. 2.246 3.153 3.084 3.076 3.205

Table 2: Average PESQ scores for the different training targets and
the noise aware training (NAT) models in seen noise conditions.
The average over all SNR levels is denoted AVG.

5.2. Evaluation in Unseen Noise

The average PESQ scores for all the models in unseen noise con-
ditions are presented in Table 4. Unlike in seen noise conditions,
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SNR Noisy NAT LogFFT FFT-MASK NRM(dB)
20 0.961 0.937 0.981 0.974 0.977
15 0.926 0.928 0.968 0.958 0.962
10 0.872 0.916 0.947 0.934 0.941
5 0.799 0.897 0.917 0.899 0.910
0 0.708 0.872 0.874 0.851 0.868
-5 0.608 0.834 0.817 0.787 0.808

AVG. 0.812 0.897 0.917 0.901 0.911

Table 3: Average STOI scores for the proposed and NAT systems in
seen noise conditions.

FFT-MASK performs better than LogFFT at all SNR values and is
consequently better on average. The NRM model is once again bet-
ter than both the FFT-MASK and LogFFT models and is the best of
the noise prediction models in enhancing speech quality.

The average STOI scores for all the models in unseen noise
are shown in Table 5. FFT-MASK performs slightly better than
LogFFT, but the average STOI difference is insignificant. The NRM
model outperforms both the FFT-MASK and LogFFT models with
a difference of about 2% in the average STOI scores.

Considering the performance of all the noise prediction mod-
els in both seen and noise noise conditions, the NRM model pre-
forms best, followed by the FFT-MASK, and lastly, the LogFFT
models. The two normalized models, NRM and FFT-MASK, per-
form markedly better than LogFFT in unseen noise conditions. This
could be because their training targets are related to both the added-
noise and the noisy signal spectra, and the noisy signal spectrum,
in effect, constrains the value of the target. In unseen noise con-
ditions, the constraining effect remains and the targets generalize
better. This is not the case with LogFFT, and it is therefore more
susceptible to prediction errors in unseen noise conditions.

SNR Noisy NAT LogFFT FFT-MASK NRM(dB)
20 3.182 3.426 3.292 3.413 3.530
15 2.875 3.242 3.007 3.134 3.266
10 2.569 3.020 2.715 2.842 2.976
5 2.288 2.760 2.420 2.538 2.664
0 2.036 2.475 2.137 2.233 2.345
-5 1.779 2.182 1.865 1.942 2.032

AVG. 2.455 2.851 2.573 2.684 2.802

Table 4: Average PESQ scores for the proposed and NAT systems
in unseen noise conditions.

SNR Noisy NAT LogFFT FFT-MASK NRM(dB)
20 0.958 0.935 0.965 0.965 0.970
15 0.925 0.922 0.937 0.939 0.949
10 0.876 0.900 0.893 0.899 0.915
5 0.813 0.862 0.832 0.842 0.863
0 0.736 0.804 0.755 0.767 0.793
-5 0.650 0.727 0.666 0.677 0.706

AVG. 0.826 0.858 0.841 0.848 0.866

Table 5: Average STOI scores for the proposed and NAT systems in
unseen noise conditions.

5.3. Comparison of Speech and Noise Prediction Models

The PESQ scores in Table 2 show that the noise-prediction mod-
els perform comparatively well at higher SNR values, and in seen
noise conditions. The NRM model outperforms the NAT model
at all SNR values above 0dB, however, the NAT model performs
better at the lower SNR values. The difference between the PESQ
scores of the NAT and noise models as SNR decreases is worse for
the LogFFT and FFT-MASK models than it is for the NRM model.
The likely reason for the observed drop in performance with SNR is
that the training targets of the noise prediction models are SNR de-
pendent. As such, the DNN might tend to average over these targets
leading to under-estimation of the noise in low-SNR signals. Our
informal listening tests confirmed that the low-SNR speech signals
enhanced by the noise prediction models had more residual noise
than those enhanced by the NAT model.

The STOI scores in Table 3 show that that the noise prediction
models also perform well in enhancing intelligibility in seen noise
conditions. The LogFFT model outperforms the NAT model at all
SNR values except -5dB, and both the LogFFT and NRM models
outperform the NAT model by about 2% on average.

The PESQ scores in Table 4 show that the NRM model per-
forms slightly better than the NAT model above 10dB SNR in un-
seen noise conditions. 10dB SNR marks an inflection point at which
the NAT model becomes increasingly better than the NRM model
as SNR decreases, and the NAT model performs slightly better than
the NRM model on average. The STOI scores in Table 5 show the
NRM model performs better than the NAT model above 0dB SNR,
but the performance margin reduces as SNR decreases. The average
STOI score of the NRM model is about 1% better than that of the
NAT model.

The noise models can thus be seen to perform comparatively
well to the NAT model in enhancing speech quality at higher av-
erage SNR values and in enhancing intelligibility even when the
latter is not accompanied by corresponding quality enhancement.
The most likely reason for this observation lies in how target esti-
mation errors differently affect both model types. Estimation errors
in the NAT model could either attenuate or amplify portions of the
speech signal spectrum and cause attending distortions in the en-
hanced speech. Amplification distortions of the enhanced speech
spectrum have been shown to adversely affect the speech intelligi-
bility [31]. Estimation errors could similarly affect the estimated
noise spectrum, however, these are more likely to occur in noise-
dominant speech segments and do not affect the enhanced speech
spectrum. Our informal listening tests showed that while the lower-
SNR signal enhanced by the NAT model tended to be garbled, this
was not the case with the noise models.

6. CONCLUSION

A study of DNN training targets for noise prediction was conducted.
Objective test results showed the noise models were particularly ef-
fective in enhancing the intelligibility of noisy speech signals. The
mask-based noise targets, which inherently include a normaliza-
tion factor, performed better than the spectral noise target in unseen
noise conditions. The noise ratio mask was the best all-round noise
target. It outperformed the NAT model in seen noise conditions and
in improving intelligibility in unseen noise, but fell short at lower
SNR values. In future work, we will investigate how to further im-
prove the robustness of the noise models in low-SNR and in unseen
noise conditions.
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