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ABSTRACT

Speech separation is a fundamental problem in speech and
signal processing. A particular challenge is monaural separa-
tion of cochannel speech, or a two-talker mixture, in a rever-
berant environment. In this paper, we study recurrent neural
networks (RNNs) with long short-term memory (LSTM)
in separating and enhancing speech signals in reverberant
cochannel mixtures. Our investigation shows that RNNs are
effective in separating reverberant speech signals. In addition,
RNNs significantly outperform deep feedforward networks
based on objective speech intelligibility and quality measures.
We also find that the best performance is achieved when the
ideal ratio mask (IRM) is used as the training target in com-
parison with alternative training targets. While trained using
reverberant signals generated by simulated room impulse
responses (RIRs), our model generalizes well to conditions
where the signals are generated by recorded RIRs.

Index Terms— Cochannel speech separation, room re-
verberation, deep neural network, long short-term memory

1. INTRODUCTION

A fundamental problem in speech processing is source sepa-
ration. Successful separation can lead to better performance
for robust automatic speech recognition (ASR), speaker iden-
tification (SID), and speech communication systems. Lis-
teners with hearing impairment will also benefit as stud-
ies show that, in comparison to normal-hearing listeners,
hearing-impaired listeners have more trouble in the presence
of an interfering speaker [1, 2] and in moderate amounts
of room reverberation [3, 4]. Hearing-aid devices embed-
ded with sound separation capability should be able to help
the user better understand the target speech in real acous-
tic environments. The focus of this study is on separating
two speakers in reverberant conditions. Since reverberation
degrades speech intelligibility and quality, we also aim at
dereverberating the mixture signals.

Cochannel speech separation is a special case of the
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Fig. 1: Overview of the proposed separation framework.

speech separation problem in which the goal is to recover
speech of interest (i. e., target speech) distorted by back-
ground noise, room reverberation, or interfering speech. For
speech separation, data-driven approaches used in supervised
learning have shown better performance compared to tra-
ditional signal processing methods [5]. Supervised sound
separation aims to learn a function from noisy inputs to a
corresponding clean target.

Deep fead-forward neural networks (DFNs) have shown
a strong representational capacity [6]. Wang and Wang [7]
first introduced DFN for speech separation. Since then, DFNs
have been increasingly used in speech separation. For exam-
ple, studies in [8, 9, 10, 11] train models to separate two-talker
mixtures in anechoic environments. Room reverberation is
not considered in these studies, which is a major distortion in
real environments. Other studies apply DFNs in reverberant
conditions [12, 13, 14, 15]. These studies are on speech-noise
separation and not on two-talker conditions. In our previous
work [16], we showed that DFNs behave differently when the
interference is human speech instead of background noise.

Recurrent neural networks (RNNs) are interesting models
for speech processing due to their temporal processing mech-
anism. Long short-term memory (LSTM) [17] is a variant of
RNN that facilitates information flow through time, via us-
ing memory cells. Erdogan et. al. [18] and Weninger et. al.
[19] apply LSTMs for speech enhancement in noisy environ-
ments. In a very recent study, Chen and Wang [20] address
the speech-noise separation problem and show that LSTMs
have a greater capacity over DFNs in generalizing to unseen
speaker and noise conditions.
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Due to temporal effects of reverberation, LSTM is poten-
tially a better model than a DFN for reverberant speech pro-
cessing. In this paper we study LSTMs in separating two-
talker mixtures in reverberant condition. To our knowledge
LSTMs have not been applied to these conditions. In this
study, we perform systematic evaluations to compare the sep-
aration performance of DFNs and LSTMs in cochannel and
reverberant conditions. The evaluation also includes compar-
ison of two different training targets.

It is important to note that our study aims at addressing the
speaker-specific cochannel separation. Solutions for the prob-
lem of open speaker-set separation have been recently pro-
posed (e.g., [21, 22, 23]). These studies are design to work in
anechoic environment, and generalization to reverberant con-
dition is not straightforward in these systems. More impor-
tantly, since these studies do not directly model the speakers,
they are expected to yield worse performance in comparison
with the speaker-specific models.

The rest of the paper is organized as follows. We describe
our proposed cochannel speech separation method in Section
2. Section 3 presents the experimental results, and we con-
clude in Section 4.

2. PROPOSED METHOD

The proposed framework is depicted in Fig. 1. Reverberant
mixtures are generated by separately convolving a target and
interference utterance with a room impulse response (RIR).
Reverberant target and interfering signals are mixed in the
time domain, and then features are extracted from the mix-
ture. We normalize the training features to zero mean and unit
variance in each dimension. We use the same normalization
factors to normalize the test data features before feeding to the
DFN/LSTM, frame by frame. The estimated magnitudes are
generated from the network output as described in Sec. 2.3.
Lastly, using the mixture signal phase and the estimated mag-
nitude spectrograms, the inverse short-time Fourier transform
(STFT) generates an estimate of the two signals in the time
domain. We briefly describe the elements of the framework
in the following.

2.1. Features

In a previous study [16], we found that the combination of
Gammatone Frequency Cepstral Coefficients (GFCC) [24],
Power-Normalized Cepstral Coefficients (PNCC) [25], and
Log-Mel Filterbank features form a complementary feature
set for cochannel separation in reverberant conditions. This
combination is more effective than the features used in other
speech enhancement studies. We extract a 31-D GFCC, 31-
D PNCC and 40-D Log-mel feature per frame of the mixture
signal as described in [16]. This set can be used as a feature
vector, F (m), where m indicates the time frame. One can
employ neighboring frames, and the feature vector, F̃ (m),

will be:

F̃a,b(m) = [F (m− a), · · · , F (m+ b)] (1)

where a and b indicate the number of preceding and succeed-
ing frames to use, respectively. Setting b = 0 in this formula-
tion preserves the causality property of the system.

2.2. Learning machines

The baseline system is a DFN with 4 hidden layers, and each
hidden layer has 1500 units. ReLU is used as the activation
function in the hidden units. The input to this DFN is F̃10,0(.),
and accordingly we refer to this system as DFN10,0. We also
train a 4-layer LSTM, with 600 units in each of its layers. The
output layer of the LSTM is a fully-connected feed-forward
layer stacked on top of the recurrent layers. Due to the re-
current connections in the LSTM, it is not necessary to use
a window of feature frames in the input. For that reason, we
use F̃0,0(.) as the input feature vector for LSTM training.

Assuming that there is access to future frames (i.e., the
full utterance) one can train a bidirectional LSTM (BLSTM).
A BLSTM comprises of two unidirectional LSTMs one pro-
cessing the signal in forward direction and the other process-
ing it in backward. We use a BLSTM with 600 hidden units in
each layer, and compare the performance with DFN5,5 which
uses the feature vector F̃5,5(.).

Each network is trained using the Adam [26] algorithm
to minimize the mean squared error loss. The algorithm is
run for 100 epochs, with the learning rate of 3 × 10−4 . The
LSTMs are input by 100 feature frames at a time.

2.3. Training objectives

Wang et. al. [5] showed that the DFN targets contribute to the
separation performance. We consider two different training
targets in this study. Assume s1(.), s2(.), and m(.) represent
the direct-sound of the first source, direct-sound of the second
source, and the reverberant mixture signals in time domain,
respectively. Then we apply short-time frequency transform
(STFT), on each of the signals to derive S1(.), S2(.), and
M(.). We also define SC

1 (.) and SC
2 (.) as the STFT repre-

sentation of m(.)− s1(.) and m(.)− s2(.), respectively. The
training targets in this study are:

• Log-magnitude spectrogram (MAG): This target is
simply [log|S1(.)|, log|S2(.)|]. While using this type
of target, we use a linear activation function in the net-
work output layer since it ranges over (−∞,∞). At
test time the network output is decompressed by an ex-
ponential function before signal resynthesis.

• Ideal ratio mask (IRM): The IRM is defined as fol-
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lows [5, 9]:

IRM = [IRM1, IRM2] (2)

IRMi =
|Si|

|Si|+ |SC
i |

, i = 1, 2 (3)

Since the IRM ranges over [0, 1], while using the IRM
as the target, we use the sigmoid function in the out-
put layer activation. During test time, we multiply the
output of the network by [|M(.)|, |M(.)|] to derive esti-
mated source magnitude responses. Note that IRM1 +
IRM2 6= 1, unlike in [9].

2.4. Evaluation metrics

We use STOI and PESQ as the objective scores for speech in-
telligibility and quality, as they correlate with the human test
scores. Higher STOI and PESQ scores indicate better speech
intelligibility and quality. We use the direct-sound male and
the direct-sound female signals as the reference in these met-
rics.

3. EXPERIMENTS

We use the IEEE corpus [27] to train and test the systems.
This corpus consists of 1440 utterances, where half are spo-
ken by a male speaker, and the other half by a female speaker.
We randomly choose 500 sentences by each speaker for train-
ing and the remaining utterances are used for testing. Then
we generate 125, 000 training signals by mixing one female
and one male utterance. The reverberation time (T60) is ran-
domly chosen from the range of [0.3, 0.9] seconds, and rever-
berant signals are generated using a RIR generator1 based on
the image method [28]. In our simulations the room size is
(6.5, 8.5, 3) m and the microphone is located at (3, 4, 1.5)
m. We place the male speaker at 1 m and the female speakers
at 2 m distance from the microphone. Target-to-interference
energy ratio (TIR) is drawn from the range of [−12, 12] dB,
then the female utterance is scaled and added to the male sig-
nal. Since sentences do not have the same length, a female
utterance is clipped or repeated until it covers all of its corre-
sponding male utterance in a mixture.

Test data is generated using different utterances and a
slightly different simulation room, so that no RIRs in the
training data is repeated in the test set.

3.1. Performance with simulated RIRs

Average STOI scores on 1000 test mixtures in different con-
ditions are shown in Table 1. The TIR for the mixture signals
is within the range of [−12, 12] dB.

We observe that the DFN achieves a higher baseline per-
formance while future frames are incorporated. Likewise, a

1https://github.com/ehabets/RIR-Generator

Table 1
Average STOI (%) scores in simulated reverberant

conditions. T60 = 0.0 s indicates anechoic condition. Scores
for female and male sentences are shown separately with the

latter in parentheses. TIR for each mixture signal is in the
range of [−12, 12] dB.

T60 (s) 0.0 s 0.3 s 0.6 s 0.9 s Average

Mixture 58.6(57.9) 54.8(47.3) 44.7(35.1) 36.9(27.1) 48.7(41.8)

DFN10,0-MAG 76.9(72.43) 73.8(67.1) 67.5(60.6) 61.7(54.9) 70.0(63.7)

DFN10,0-IRM 84.4(81.2) 78.8(70.2) 70.8(61.9) 63.5(55.1) 74.4(67.1)

LSTM-MAG 81.1(77.0) 74.2(68.9) 67.3(61.6) 72.3(56.7) 73.7(67.6)

LSTM-IRM 87.0(84.2) 81.0(71.8) 71.8(63.3) 64.8(56.9) 76.2(69.0)

DFN5,5-MAG 78.5(72.1) 76.5(70.0) 70.3(64.4) 64.17(58.9) 72.4(66.4)

DFN5,5-IRM 86.1(80.7) 80.7(71.6) 73.0(64.8) 66.0(58.9) 76.5(69.0)

BLSTM-MAG 86.2(81.9) 81.6(75.9) 74.9(70.2) 69.6(65.6) 78.1(73.4)

BLSTM-IRM 89.9(86.4) 84.7(76.6) 77.2(70.7) 71.6(66.3) 80.9(75.0)

Table 2
Average PESQ scores in simulated reverberant conditions.

T60 (s) 0.0 s 0.3 s 0.6 s 0.9 s Average

Mixture 1.38(1.27) 1.40(1.08) 1.20(0.79) 1.08(0.65) 1.27(0.94)

DFN10,0-MAG 2.35(2.08) 2.15(1.79) 1.76(1.45) 1.51(1.21) 1.94(1.63)

DFN10,0-IRM 2.55(2.33) 2.30(1.90) 1.88(1.54) 1.63(1.29) 2.09(1.77)

LSTM-MAG 2.54(2.31) 2.28(1.84) 1.84(1.44) 1.58(1.20) 2.06(1.7)

LSTM-IRM 2.66(2.46) 2.41(1.95) 1.94(1.53) 1.67(1.30) 2.17(1.81)

DFN5,5-MAG 2.40(2.01) 2.28(1.87) 1.90(1.57) 1.63(1.32) 2.05(1.7)

DFN5,5-IRM 2.67(2.31) 2.41(1.95) 1.97(1.63) 1.70(1.37) 2.19(1.81)

BLSTM-MAG 2.71(2.48) 2.48(2.12) 2.09(1.80) 1.80(1.57) 2.27(1.99)

BLSTM-IRM 2.85(2.58) 2.61(2.18) 2.18(1.88) 1.93(1.68) 2.39(2.08)

BLSTM outperforms an LSTM. Second, LSTM outperforms
DFN in all conditions, indicating that it is a better fit for
speech separation in reverberant conditions. The gap between
those two is as large as 7 percentage scores in high reverbera-
tion times. It is also interesting to see that the model is trained
on reverberant data and generalizes well to separating ane-
choic mixtures. Finally, we note for the cochannel separation
problem in reverberant conditions, IRM estimation is a better
method than directly predicting the magnitude spectrograms
of the sources.

Table 2 shows the quality of the separated signals using
PESQ scores. Again, we observe that in all cases BLSTM-
IRM is the best in enhancing the quality of the female and
male utterances.

Spectrograms in Fig. 2 illustrate a separation example us-
ing DFN5,5-IRM and LSTM-IRM. As seen in the figures, for
both systems the spectrograms of the separated signals resem-
ble the clean spectrograms. We also observe that the LSTM
was able to generate smoother spectrograms. We could also
confirm this with our informal listening tests.

5406



Table 3
Average STOI (%) scores in recorded RIR conditions.

T60 (s) 0.32 s 0.47 s 0.68 s 0.89 s Average

Mixture 57.0(52.7) 51.3(50.2) 57.0(52.9) 53.8(50.9) 54.5(51.7)

DFN10,0-IRM 80.0(73.4) 72.5(69.7) 79.1(72.8) 70.1(63.5) 75.4(69.8)

LSTM-IRM 81.9(75.6) 74.8(71.4) 81.3(75) 71.2(64.6) 77.3(71.7)

DFN5,5-IRM 81.4(74.0) 73.3(70.0) 80.0(73.0) 70.8(62.9) 76.4(70.0)

BLSTM-IRM 84.7(79.8) 78.1(75.4) 84.1(78.7) 74.7(67.9) 80.4(75.4)

Table 4
Average PESQ scores in recorded RIR conditions.

T60 (s) 0.32 s 0.47 s 0.68 s 0.89 s Average

Mixture 1.43(1.26) 1.37(1.16) 1.43(1.23) 1.52(1.27) 1.44(1.23)

DFN10,0-IRM 2.27(2.03) 1.99(1.83) 2.22(1.95) 1.90(1.62) 2.09(1.86)

LSTM-IRM 2.36(2.09) 2.06(1.83) 2.32(2.02) 1.87(1.49) 2.15(1.85)

DFN5,5-IRM 2.36(2.05) 2.04(1.85) 2.30(1.95) 1.95(1.61) 2.16(1.87)

BLSTM-IRM 2.50(2.30) 2.20(2.05) 2.44(2.19) 1.91(1.61) 2.26(2.04)

3.2. Performance with recorded RIRs

In order to examine the generalizability of the methods to
real room environments, we generate mixtures using recorded
RIRs from [29] in 4 rooms with 37 captured RIRs in each.
For each room we choose one channel of each binaural RIR
and then resample it to match the sampling frequency of the
mixtures. We also randomly choose two RIRs to generate re-
verberant mixtures. Note that no training with recorded RIRs
is performed.

STOI Results in recorded RIRs are provided in Table 3.
The results indicate good generalization to real acoustic en-
vironments. Finally, PESQ scores are presented in Table 4.
These results also show that a BLSTM using IRM as the train-
ing targets best generalizes to recored RIR conditions.

4. CONCLUSION

In this paper we proposed using RNNs with LSTM to sep-
arate cochannel speech in reverberant conditions. Systems
have been evaluated in different TIR and T60 conditions. We
achieved substantial improvements in objective speech intelli-
gibility and quality scores using LSTMs. Comparisons show
that future frames can be very useful in separating reverberant
speech signals. In future work we plan to extend this method
to situations with background noise and multiple speakers.
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Fig. 2: (Color online) Separation illustration for an IEEE
male sentence mixed with a female sentence at TIR of 0 dB
and T60 of 0.9 s. Spectrogram for (a) reverberant mixture, (b)
clean male speech (c) clean female speech, (d) estimated male
speech from DFN5,5-IRM, (e) estimated female speech from
DFN5,5-IRM (f) estimated male speech from BLSTM-IRM,
and (g) estimated female speech from BLSTM-IRM.
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