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ABSTRACT

Multi-channel speech enhancement with ad-hoc sensors has been a
challenging task. Speech model guided beamforming algorithms are
able to recover natural sounding speech, but the speech models tend
to be oversimplified or the inference would otherwise be too com-
plicated. On the other hand, deep learning based enhancement ap-
proaches are able to learn complicated speech distributions and per-
form efficient inference, but they are unable to deal with variable
number of input channels. Also, deep learning approaches introduce
a lot of errors, particularly in the presence of unseen noise types
and settings. We have therefore proposed an enhancement frame-
work called DEEPBEAM, which combines the two complementary
classes of algorithms. DEEPBEAM introduces a beamforming fil-
ter to produce natural sounding speech, but the filter coefficients are
determined with the help of a monaural speech enhancement neu-
ral network. Experiments on synthetic and real-world data show
that DEEPBEAM is able to produce clean, dry and natural sounding
speech, and is robust against unseen noise.

Index Terms— multi-channel speech enhancement, ad-hoc sen-
sors, beamforming, deep learning, WaveNet

1. INTRODUCTION

Multi-channel speech enhancement with ad-hoc sensors has long
been a challenging task [1]. As the traditional benchmark in multi-
channel enhancement tasks, beamforming algorithms do not work
well with with ad-hoc microphones. This is because most beam-
formers need to calibrate the speaker location as well as the interfer-
ence characteristics, so that it can turn its beam toward the speaker,
while suppressing the interference. However, neither of the two vital
information can be accurately measured, due to the missing sensor
position information and microphone heterogeneity [2].

Another class of beamforming algorithms avoid measuring the
speaker position and interference. Instead, they introduce prior
knowledge on speech, and find the optimal beamformer by maxi-
mizing the ”speechness” criteria, such as sample kurtosis [3], negen-
tropy [4], speech prior distributions [5, 6], fitting glottal residual [7]
etc. In particular, the GRAB algorithm [7] is able to outperform
the closest microphone strategy even in very adverse real-world
scenarios. Despite their success, these algorithms are bottlenecked
by their oversimplified prior knowledge. For example, GRAB only
models glottal energy, resulting in vocal tract ambiguity.

On the other hand, deep learning techniques are well known for
their ability to capture complex probability dependencies and effi-
cient inference, and thus have been widely used in single-channel
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speech enhancement tasks [8–13]. Unfortunately, directly applying
deep enhancement networks to multi-channel enhancement suffers
from two difficulties. First, deep enhancement techniques often pro-
duce a lot of artifacts and nonlinear distortions [11, 12] which are
perceptually undesirable. Second, neural networks often generalize
poorly to unseen noise and configurations, whereas in speech en-
hancement with ad-hoc sensors, such variability is large.

As it turns out, these problems can in turn be resolved by tra-
ditional beamforming. Therefore, several algorithms [14–18] have
been proposed that applies deep learning to predict time-frequency
masks, and then beamforming to produce the enhanced speech.
However, these methods are confined to frequency domain, which
suffers from two problems for our application. First, they to not work
well for ad-hoc microphones, because of the spatial correlation es-
timation errors. Second, our application is for human consumption,
but the frequency-domain methods suffer from phase distortions and
discontinuities, which impede perceptual quality.

Motivated by this observation, we have proposed an enhance-
ment framework for ad-hoc microphones called DEEPBEAM, which
combines deep learning and beamforming, and which directly works
on waveform. DEEPBEAM introduces a time-domain beamforming
filter to produce natural sounding speech, but the filter coefficients
are iteratively determined with the help of WaveNet [19]. It can
be shown that despite the error-prone enhancement network, DEEP-
BEAM is able to converge approximately to the optimal beamformer
under some assumptions. Experiments on both the simulated and
real-world data show that DEEPBEAM is able to produce clean, dry
and natural sounding speech, and generalize well to various settings.

2. PROBLEM FORMULATION

To formally define the problem, denote s[t] as the clean speech sig-
nal. Suppose there are K channels of observed signals, yk[t], k =
1, · · · ,K, which are represented as

yk[t] = s[t] ∗ ik[t] + n[t] ∗ jk[t] (1)

where ∗ denotes discrete convolution, n(t) denotes additive noise.
ik[t] and jk[t] are the impulse responses of the signal reverberation
and noise reverberation in the k-th channel respectively. Our goal is
to design a τ -tap beamformer hk[t], k = 1, · · · ,K, whose output is
defined as

x[t] =

K∑
k=1

yk[t] ∗ hk[t] (2)

For notational brevity, define

s = [s[1], · · · , s[T ]]T x = [x[1], · · · , x[T ]]T

yk = [yk[1], · · · , yk[T ]]T y = [yT
1 , · · · ,yT

K ]T

h = [h1[1], · · · , h1[τ ], h2[1], · · · , hK [τ ]]T

(3)
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which are all random vectors. Also define convolutional matrices

Yk =



yk[1]
yk[2] yk[1]
...

...
. . .

yk[τ ] yk[τ − 1] · · · yk[1]
...

...
...

yk[T ] yk[T − 1] · · · yk[T − τ + 1]


(4)

and
Y = [Y1, · · · ,YK ] (5)

With these notations, Eq. (2) can be simplified as

x = Y h (6)

The target of designing the beamformer is to minimize the
weighted mean squared error (MSE):

min
x=Y h

E
[
‖x− s‖2W |y

]
(7)

where ‖x‖2W = xTWx; W is a positive definite weight matrix,
which, in our case, is a diagonal matrix of Var−1(s[t]|y).

Eq. (7) is a Wiener filtering problem [20], whose solution is

x∗ = PE[s|y] (8)

where
P = Y (Y TWY )−1Y TW (9)

is in fact the projection matrix onto the beamforming output space.
So by Eq. (8), x∗ is essentially projecting E[s|y] onto the space that
is representable by the beamforming filter.

As shown by Eq. (8), solving the Wiener filtering problem re-
quires computing E[s|y], which, due to the complex probabilistic
dependencies, we would like to introduce a deep neural network to
learn. However, as discussed, training a neural network to directly
predict E[s|y] from the multi-channel input y suffers from inflexi-
ble input dimensions, artifacts and poor generalization. DEEPBEAM
tries to resolve these problems and find an approximate solution.

3. THE DEEPBEAM FRAMEWORK

In this section, we will describe the DEEPBEAM algorithm. We
will first outline the algorithm, and then describe the neural network
structure it applies. Finally, a convergence analysis is introduced.

3.1. The Algorithm Overview

As mentioned, DEEPBEAM introduces a deep enhancement network
to learn the posterior expectation, while addressing its limitations.
First, DEEPBEAM are regularized by the beamformer to generalize
well to unseen noise and microphone configurations. Second, it tol-
erates the distortions and artifacts generated by the neural network.
Formally, the neural network outputs an inaccurate prediction of the
posterior expectation E[s|ξ],

f(ξ) = E[s|ξ] + ε(ξ) (10)

where ξ is a single-channel noisy observation, and ε(ξ) is the pre-
diction error. The goal of DEEPBEAM is to approximate the opti-
mal beamformer given the inaccurate enhancement network. Alg. 1
shows the description of the DEEPBEAM algorithm. A graph of the
DEEPBEAM framework is shown in Fig. 1.
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Fig. 1: DEEPBEAM framework.

Algorithm 1 The DEEPBEAM algorithm.

Input: Multi-channel noisy speech observations y;
A neural network that predicts f(ξ) (Eq. (10)) from any single-
channel noisy observation ξ.

Output: Beamformer output x̂∗.

Initialization:
1: Find the ‘cleanest’ channel k∗ by finding the channel that has

the smallest 0.4 quantile of its squared sample points.
2: Set x(0) = yk∗ .

Iteration:
3: for n = 1 to maximum number of iterations do
4: Feed x(n−1) to the monaural enhancement network, and ob-

tain its output

ŝ(n) = f(x(n−1)) = E[s|x(n−1)] + ε(x(n−1)) (11)

5: Update the beamformer coefficients and output

x(n) = P ŝ(n) (12)

6: end for
7: return x̂∗ = x(N)

Alg. 1 essentially alternates between the posterior expectation
and projection iteratively. It will be shown in section 3.3 that as long
as the error term ε is not too large, this iteration will approximately
converge to the optimal beamformer output.

One elegance of DEEPBEAM is that x(n) can be regarded as a
noisy observation, and shares some statistical structures with the true
noisy observations, yk. To see this, notice that by Eq. (12), x(n) is
the output of a beamformer on y. Therefore, it can be shown that
x(n) also takes the form of Eq. (1), with the same speech and noise
source, but with a different impulse response. This justifies the use
of one monaural enhancement network to take care of all the x(n).

3.2. Enhancement Network Structure

DEEPBEAM is a general framework, in which the choice of the neu-
ral network structure is not fixed. The following network structure is
just one of the structures that produce competitive results.

The enhancement network applied here is similar to [12], which
is inspired by WaveNet [19]. Formally, denote the quantized speech
samples as s̃[t], and the samples of x(n) as x(n)[t]. Then the en-
hancement network predicts the posterior probability mass function
(PMF) of s̃[t]:

p(s̃[t]|x(n)) ≈ p(s̃[t]|x(n)[t− τr], · · · , x(n)[t+ τr]) (13)

Here we have restricted the probabilistic dependency to span τr time
steps. Cross-entropy is applied as the loss function.

Similar to WaveNet, the enhancement network consists of two
modules. The first module, called the dilated convolution module,
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contains a stack of dilated convolutional layers with residual con-
nections and skip outputs. The second module, called the post pro-
cessing module, sums all the skip outputs and feeds them into a stack
of fully connected layers before producing the final output.

There are two major differences from the standard WaveNet
structure. First, the input to the enhancement network is the noisy
observation waveform x(n) instead of the clean speech. Second,
to account for the future dependencies, the convolutional layers are
noncausal 1× 3 instead of the causal 1× 2.

After the posterior distribution is predicted, the posterior mo-
ments,E[s|x(n)] and Var[s[t]|y] (for computingW ), are computed
as the moments of the predicted PMF.

3.3. Convergence Analysis

In order to analyze the convergence property of DEEPBEAM, we
assume the following bound on the error term

E[‖Pε(x(n))‖2W |y] ≤ ρE[‖x(n) − s‖2W |y] (14)

where ρ < 0.5 is some constant. This assumption is actually not
quite stringent, because it does not bound the weighted norm of
ε(x(n)) itself, but its projected value Pε(x(n)). In fact, the pro-
jection can drastically reduce the weighted norm of the error term.
For example, most of the artifacts and nonlinear distortions that the
enhancement network introduces cannot possibly be generated by
beamforming on y, and therefore will be removed by the projection.
The only errors that are likely to remain are residual noise and rever-
berations. This is one advantage of combining beamforming filter
and neural network. This assumption is also very intuitive. It means
that the projected output error is always smaller than input error.

Then, we have the following theorem.

Theorem 1. Suppose Eq. (14) holds. Then

lim sup
n→∞

E[‖x(n) − x∗‖2W |y] ≤ u (15)

where

u =
2ρ

1− 2ρ
E[‖s− x∗‖2W |y]

+
2

1− 2ρ
sup
n

E[‖PE[s|x(n)]− x∗‖2W |y]
(16)

Proof. On one hand, from Eqs. (11) and (12)

E[‖Pε(x(n))‖2W |y] = E[‖x(n+1) − PE[s|x(n)]‖2W |y]

≥1

2
E[‖x(n+1) − x∗‖2W |y]− E[‖PE[s|x(n)]− x∗‖2W |y]

(17)

On the other hand, by orthogonality principle

E[‖x(n) − s‖2W |y] = E[‖x(n) − x∗‖2W |y] + E[‖s− x∗‖2W |y]
(18)

Combining Eqs. (14), (17) and (18), we have

E[‖x(n+1) − x∗‖2W |y] ≤ 2ρE[‖x(n) − x∗‖2W |y] + (1− 2ρ)u
(19)

Create an auxiliary sequence

a(n) = E[‖x(n) − x∗‖2W |y]− u (20)

Then by Eq. (19),
a(n+1) ≤ (2ρ)na(1) (21)

Taking lim supn→∞ on both sides of Eq. (21) concludes the proof.

If u = 0, then Eq. (15) implies mean square convergence to the
optimal beamformer output. In actuality, u is nonzero, but it tends
to be very small. The first term of u measures the distance between
the optimal beamformer output and the true speech. According to
our empirical study, when the number of channel is sufficient, the
optimal beamformer is able to recover the true speech very well, so
the first term is small. The second term of u measures the distance
between two posterior expectations PE[s|x(n)] and PE[s|y]. The
former is conditional on single-channel noisy speech, and the lat-
ter on multiple-channel noisy speech. Considering that the speech
sample space is highly structured, and that the noisy speech x(n) is
relatively clean already, both posterior expectations should be close
to the true speech, and thereby close to each other. In a nutshell, with
a small u, the DEEPBEAM prediction is highly accurate. Section 4.4
will verify the convergence behavior of DEEPBEAM empirically.

4. EXPERIMENTS

This section first introduces how the enhancement network is con-
figured and trained, and then presents the results of experiments on
both simulated and real-world data. Audio samples can be found in
http://tiny.cc/a1qjoy .

4.1. Enhancement Network Configurations

The enhancement network hyperparameter configurations fol-
low [19]. It has 4 blocks of 10 dilated convolution layers. There
are two post processing layers. The hidden node dimension is 32,
and the skip node dimension is 256. The clean speech is quantized
into 256 level via µ-law companding, and thus the output dimension
is 256. The activation function in the dilated convolutional layers
is the gated activation unit; that in the post processing layers is the
ReLU function. The output activation is softmax.

The enhancement network is trained on simulated data only,
which is generated in the same way as in [7]. The speech source,
noise source and eight microphones are randomly placed into a ran-
domly sized cubic room. The impulse response from each source to
each microphone is generated using the image-source method [21,
22]. The noisy observations are generated according to Eq. (1). The
reverberation time is uniformly randomly drawn from [100, 300] ms.
The energy ratio between the speech source and noise source, Er , is
uniformly randomly drawn from [−5, 20] dB. The speech content
is drawn from VCTK [23], which contains 109 speakers. The noise
content contains 90 minutes of audio drawn from [24–26]. The total
duration of the training audio is 8 hours. The enhancement network
is trained using ADAM optimizer for 400,000 iterations.

4.2. Simulated Data Evaluation

The simulated data for evaluation is generated the same way as the
training data, except for two differences. First, the source energy
ratio, Er , is set to four levels, −10 dB, 0 dB, 10 dB, and 20 dB.
Second, both the speaker and noise can be either seen or unseen in
the training set, leading to four different scenarios to test generaliz-
ability. It is worth highlighting that the unseen speaker utterances
and unseen noise are both drawn from different corpora from train-
ing, TIMIT [27] and FreeSFX [28] respectively. Each utterance is 3
seconds in length. The total length of the dataset is 12 minutes.

DEEPBEAM is compared with GRAB [7], MVDR1 [29], IVA [5]
and the closest channel (CLOSEST), in term of two criteria:

1Clean speech is given for voice activity detection.
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Table 1: Simulated Data Evaluation Results.

Er = -10 0 10 20

SNR
(dB)

DEEPBEAM S1 18.5 22.0 26.5 28.4
DEEPBEAM S2 17.1 20.3 25.9 27.4
DEEPBEAM S3 15.3 19.5 24.1 27.6
DEEPBEAM S4 14.1 19.0 23.1 28.5
GRAB 2.48 12.5 21.6 25.4
CLOSEST -5.13 3.38 14.9 24.8
MVDR 8.41 12.9 22.6 26.7
IVA 10.3 13.3 16.8 19.2

DRR
(dB)

DEEPBEAM S1 3.45 8.97 11.2 11.5
DEEPBEAM S2 7.38 11.9 12.6 11.5
DEEPBEAM S3 5.60 4.85 8.43 9.78
DEEPBEAM S4 2.11 6.68 7.10 9.31
GRAB -0.83 1.70 3.63 3.68
CLOSEST 8.56 7.32 7.67 8.44
MVDR -2.17 -3.47 -3.42 -4.13
IVA -8.92 -8.77 -8.81 -8.99

S1: seen speaker, seen noise; S2: seen speaker, unseen noise;
S3: unseen speaker, seen noise; S4: unseen speaker, unseen noise.

• Signal-to-Noise Ratio (SNR): The energy ratio of processed
clean speech over processed noise in dB.
• Direct-to-Reverberant Ratio (DRR): the ratio of the energy of
direct path speech in the processed output over that of its reverber-
ation in dB. Direct path and reverberation are defined as clean dry
speech convolved with the peak portion and tail portion of processed
room impulse response. The peak portion is defined as±6 ms within
the highest peak; the tail portion is defined as ±6 ms beyond.

Table 1 shows the results. As expected, DEEPBEAM’s perfor-
mance drops from S1, where both noise and speaker are seen during
training, to S4, where neither is seen. However, in terms of SNR,
even DEEPBEAM S4 significantly outperforms MVDR, which is the
benchmark in noise suppression. In terms of DRR, DEEPBEAM
matches or surpasses CLOSEST except for -10 dB. GRAB performs
poorer than in [7], because each utterance is reduced from 10 sec-
onds to 3 seconds, which is more realistic but challenging. In short,
of “cleanness” and “dryness”, most algorithms can only achieve one,
but DEEPBEAM can achieve both with superior performance.

4.3. Real-world Data Evaluation

DEEPBEAM and the baselines are also evaluated on the real-world
dataset introduced in [7], which consists of two utterances by two
speakers mixed with five types of noises, all recorded in a real con-
ference room using eight randomly positioned microphones. The
source energy ratio is set such that the SNR for the closest micro-
phone is 10 dB. The utterance in each scenario is around 1 minute
long, so the total length of the dataset is 10 minutes.

Besides SNR, a subjective test similar to [7] is performed on
Amazon Mechanical Turk. Each utterance is broken into six sen-
tences. In each test unit, called HIT, a subject is presented with one
sentence processed by the five algorithms, and asked to assign an
MOS [30] to each of them. Each HIT is assigned to 10 subjects.

Table 2 shows the results. As can be seen, DEEPBEAM outper-
forms the other algorithms by a large margin. In particular, DEEP-
BEAM achieves > 4 MOS in some noise types. These results are
very impressive, because DEEPBEAM is only trained on simulated
data. The real-world data differ significantly from the simulated data
in terms of speakers, noise types and recording environment. What’s

Table 2: Realworld Data Evaluation Results.

Noise Type N1 N2 N3 N4 N5

SNR
(dB)

DEEPBEAM 20.1 20.0 16.9 19.6 18.7
GRAB 18.9 17.4 12.4 18.5 17.4
CLOSEST 10.0 10.0 10.0 10.0 10.0
MVDR 10.8 16.5 7.72 14.0 13.4
IVA 11.7 9.74 6.83 12.4 15.9

MOS

DEEPBEAM 3.83 3.72 3.63 4.09 4.20
GRAB 3.10 3.06 2.93 3.71 3.45
CLOSEST 2.74 2.68 3.02 3.55 3.50
MVDR 2.05 2.40 2.28 2.71 2.62
IVA 1.73 2.03 1.75 1.78 2.08

N1: cell phone; N2: CombBind machine; N3:paper shuffle;
N4: door slide; N5: footsteps.

1 2 3 4 5 6 7

Iterations

15

20

25

S
N

R

3 4 5 6 7 8

# Channels
27

28

Fig. 2: SNR convergence curves with different numbers of channels.

more, some microphones are contaminated by strong electric noise,
which is not accounted for in Eq. (1). Still, DEEPBEAM manages to
conquer all the unexpected. Neural network used to be vulnerable to
unseen scenarios, but DEEPBEAM has now made it robust.

4.4. Empirical Convergence Analysis

In order to empirically test whether DEEPBEAM has a good conver-
gence property, 10 sets of eight-channel simulated data are gener-
ated with the S1 setting and Er = 10. To study different number
of channels, in each sub-test, K channels are randomly drawn from
each set of data for DEEPBEAM prediction, and the resulting SNR
convergence curves of the 10 sets are averaged. K runs from 3 to 8.

Fig. 2 shows all the averaged convergence curves. As can be
seen, DEEPBEAM converges well in all the sub-tests, which supports
our convergence discussions in section 3.3. Also, the more channels
DEEPBEAM has, the higher convergence level it can reach, which
shows that DEEPBEAM is able to accommodate different numbers
of channels using only one monaural network. We also see that the
marginal benefit of having one more channel diminishes.

5. CONCLUSION

We have proposed DEEPBEAM as a solution to multi-channel speech
enhancement with ad-hoc sensors. DEEPBEAM combines the com-
plementary beamforming and deep learning techniques, and has
exhibited superior performance and generalizability in terms of
noise suppression, reverberation cancellation and perceptual quality.
DEEPBEAM has made one step closer to resolving the long lasting
crux of low perceptual quality and poor generalizability in deep
enhancement networks, which demonstrates the power of bridging
the signal processing and deep learning areas.
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