
MULTI-SCENARIO DEEP LEARNING FOR MULTI-SPEAKER SOURCE SEPARATION

Jeroen Zegers, Hugo Van hamme

KU Leuven, Dept. ESAT, Belgium

ABSTRACT

Research in deep learning for multi-speaker source separation
has received a boost in the last years. However, most studies
are restricted to mixtures of a specific number of speakers,
called a specific scenario. While some works included ex-
periments for different scenarios, research towards combining
data of different scenarios or creating a single model for mul-
tiple scenarios have been very rare. In this work it is shown
that data of a specific scenario is relevant for solving another
scenario. Furthermore, it is concluded that a single model,
trained on different scenarios is capable of matching perfor-
mance of scenario specific models.

Index Terms— multi-speaker source separation, joint
learning, cross domain learning, deep learning

1. INTRODUCTION

Source separation (SS) in audio refers to the task of retrieving
the original sound signal of multiple sound source objects
that have been recorded in a mixture. More specifically, this
task focuses on the case when the sound sources are (par-
tially) active at the same time. Source separation can be
split in two domains: speech vs noise separation, also called
speech enhancement (SE), and speech vs speech separation,
also called multi-speaker source separation (MSSS). In re-
cent years there have been many studies in deep learning
approaches for SS. Examples in SE are [1, 2, 3, 4, 5] and
for MSSS there have been studies for male - female speech
separation [6] and speaker dependent source separation [7].
All these works handle an interclass separation problem since
distinctive classes can be defined: speech and noise; male
and female; Alex and Bob. In unsupervised (gender indepen-
dent) MSSS, no assumptions on the sources can been made
and only a single class can be defined, namely a speaker
class. This makes unsupervised MSSS an intraclass sepa-
ration problem, which is intrinsically harder than the other
discussed problems, as will be explained in section 2.1. This
paper handles single microphone problems to be as general
as possible.

Different approaches to solve this unsupervised MSSS
problem have been proposed, all of which try to cope with
the permutation problem discussed in section 2.1. In Deep
Clustering (DC), every time-frequency bin of a mixture is

mapped to an embedding vector and these are then clustered
per speaker using K-means (see section 2.2) [8, 9]. Another
approach is to directly estimate each source signal and use
utterance-level Permutation Invariant Training (uPIT) to cope
with the permutation problem (see section 2.3) [10]. Deep
Attractor Nets (DANet) are a combination of DC and uPIT as
they also estimate embeddings, but the clustering is done in
the netwerk itself via attractors, so that source signals can be
estimated directly [11]. In [12] embeddings are being pulled
to a corresponding speaker vector during training and both are
jointly optimized. Finally, in [13, 14] approaches have been
presented to include speaker information in an (un)supervised
manner.

In section 2 two methods will be explained on how to train
and test a model on a specific scenario for a mixture of S
speakers. If a solution is requested for multiple scenarios (e.g.
both mixtures of S1 and S2 speakers), a simple solution would
be to train separate models for each scenario. However, this
has the disadvantage that a model can only be trained on data
for a specific scenario, while data on other scenarios could
still be relevant. Furthermore, the solution would contain as
many models as there are scenarios and for each presented
mixture, the requested model would have to be selected.

Therefore a solution for multi-scenario learning is pro-
posed for both methods. This allows the model to learn from
more data and only a single model has to be retained for all
possible scenarios. In [9] a small initial experiment in this
context has already been done.

The remainder of this paper is organized as follows. In
section 2 a brief overview of MSSS and the permutation prob-
lem is given, as well as an explanation of two methods that
have previously been used for the task. In section 3 a so-
lution for multi-scenario learning is given. Experiments are
presented in section 4 and a conclusion is given in section 5.

2. MULTI-SPEAKER SOURCE SEPARATION

2.1. Task and permutation problem

In the tasks of MSSS, one wants to estimate a signal x̂s[n]
for the sth speaker that is as close as possible to the source
signal xs[n], given a mixture signal y[n] =

∑S
s=1 xs[n] of

S speakers. In the time-frequency domain, the same task can
be expressed using the Short Time Fourier Transform (STFT)

5379978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

of the signals. The task is then to estimate X̂s(t, f) from
Y(t, f) =

∑S
s=1 Xs(t, f). Usually, a mask M̂s(t, f) is esti-

mated for the sth speaker such that

X̂s(t, f) = M̂s(t, f) ◦Y(t, f) (1)

for every time frame t = 0, . . . , T and every frequency f =
0, . . . , F and with ◦ the Hadamard product [10]. The task to
solve the MSSS problem is thus to find a mapping fθ,s from
the input mixture to the mask estimates.

M̂s(t, f) = fθ,s(Y) (2)

with the constraint that M̂s(t, f) ≥ 0 and
∑S
s=1 M̂s(t, f) =

1 for every time-frequency bin (t,f).
A straightforward approach is to use a deep learning

model for the mapping and train the parameters θ to mini-
mize a loss function

Lθ =

S∑
s=1

∑
t,f

D(|X̂θ,s(t, f)|, |Xs(t, f)|) (3)

with D some distance measure. However, since an intraclass
separation task is executed and no prior information on the
speakers is assumed to be known, there is no guarantee that
the network is consistent in its assignment of speakers. This
is the label ambiguity or permutation problem. To cope with
this ambiguity, a loss function has to be defined that is in-
dependent of the order of the speaker targets. Deep Cluster-
ing (DC) and utterance-level Permutation Invariant Training
(uPIT), both use such a permutation invariant loss function.

2.2. Deep Clustering

In DC, the masks are not estimated directly from the input
mixture, as was done in equation 2. Instead a D-dimensional
embedding vector vtf is found for every time-frequency bin
via a mapping vtf = fθ(Y). fθ is chosen such that vtf is nor-
malized to unit length. The embedding vectors for every time-
frequency bin are stored as rows in a (TF ×D)-dimensional
matrix V. Define a (TF × S)-dimensional target matrix W,
so that wtf,s = 1 if target speaker s has the most energy in
the mixture for bin (t, f) and wtf,s = 0 otherwise. A per-
mutation independent loss function (the columns in W can
be interchanged without changing the loss function) is then
stated as

Lθ = ‖VVT −WWT ‖2F
=

∑
t1,f1,t2,f2

(〈vt1f1 ,vt2f2〉 − 〈wt1f1 ,wt2f2〉)2 (4)

where ‖.‖2F is the squared Frobenius norm. Since wtf is a
one-hot vector,

〈wt1f1 ,wt2f2〉 =

{
1, if wt1f1 = wt2f2

0, otherwise
. (5)

The angle φt1f1,t2f2 between the normalized vectors vt1f1
and vt2f2 is thus ideally

φt1f1,t2f2 =

{
0, if wt1f1 = wt2f2

π/2, otherwise
. (6)

Afterwards, all embedding vectors are clustered into S clus-
ters c using K-means. The masks are then constructed as fol-
lows

M̂s,tf =

{
1, if vtf ∈ cs
0, otherwise

. (7)

Equation 1 can then be used to estimate the original source
signals.

The network architecture is independent of the number of
speakers present in the mixture (the number of output nodes is
dependent on the embedding dimension D, which is indepen-
dent of S) and can thus be used for a mixture of any number
of speakers. However, for the K-means clustering, the num-
ber of clusters has to be known. Initial experiments using X-
means with the Bayesian Information Criterion, showed that
automatically finding the number of clusters (or speakers) in
the embedding space is far from evident.

2.3. Utterance-level Permutation Invariant Training

uPIT has a loss function based on equation 3, but it has been
adjusted to cope with the label ambiguity. The loss is defined
as

Lθ = min
p∈PS

S∑
s=1

∑
t,f

‖|X̂θ,s(t, f)| − |Xps(t, f)|‖2F (8)

with PS the set of all possible permutations for S members
and X̂θ,s(t, f) is as defined in equation 1 and 2.

Since every mask requires its own output nodes, the net-
work is dependent on the number of speakers. The number of
permutations to check in equation 8 is S!, but can be imple-
mented to have a computational complexity of S2. This could
still give computational problems for high S, but that seems
unrealistic for the task of MSSS.

3. MULTI-SCENARIO LEARNING

In the introduction some benefits of multi-scenario learning
were discussed. The DC algorithm is suited the most for
multi-scenario learning, since the architecture of the network
can be chosen identical for any scenario. For uPIT, the net-
work is shared, except for the output layer, which is specific
for each scenario.

Generally, in single scenario learning a loss L(θ, I,T) is
defined, based on the model inputs I, the model parameters
θ and the model targets T. After each training batch each

5380

parameter is updated as follows

∆θi = g

(
∂L(θ, I,T)

∂θi

)
(9)

where g() is specific to the learning algorithm, e.g. stochastic
gradient descent or Adam, and L can refer to equation 4 or 8.

For multi-scenario learning, consisting of J scenarios, a
solution would be to define a joint loss as

Lm(θ, Im,Tm) =

J∑
j=1

αjLj(θ, Ij ,Tj) (10)

and take α1 = 1, with Lj(θ, Ij ,Tj) a single scenario loss.
In the remainder of this paper Lj(θ, Ij ,Tj) is referred to as
Lj , to simplify notations. Equation 9 can then be applied as
usual. However, J − 1 meta parameters α have to be chosen,
e.g. by tuning them using a validation set. To circumvent this
we define a parameter update for each scenario and sum over
these updates as follows

∆mθi =

J∑
j

∆jθi =

J∑
j

g

(
∂αjLj
∂θi

)

=

J∑
j

g

(
αj∂Lj
∂θi

) (11)

where equation 9 and 10 were used in the second step. If a
learning algorithm is chosen that is independent of the scale of
the gradients, or in other words g(α∂L/∂θi) = g(∂L/∂θi),
like the Adam algorithm [15], equation 11 simplifies to

∆mθi =

J∑
j

g

(
∂Lj
∂θi

)
(12)

which is independent of the loss scale factors α so that they no
longer have to be tuned. To clarify, if in equation 10 the loss
of a specific scenario would be very dominant over the others,
the other scenarios would almost be ignored for the parame-
ter updates (the α parameters are introduced to counter this).
However, if instead, each scenario calculates a parameter up-
date using the Adam algorithm, the relative magnitudes of the
losses between scenarios no longer play a role due to the in-
variance to the magnitude of the loss for Adam. Notice, if a
learning algorithm like stochastic gradient descent would be
chosen, the parameter updates would scale to the magnitude
of the losses and the global update would be the same as us-
ing equation 10. A possible downside of the chosen strategy
is that relative importance of the scenarios can no longer be
tuned. For DC, the scenario specific gradients ∂Lj/∂θi are
defined for every scenario for every parameter θi. In uPIT,
the gradient for a scenario is set to 0 for parameters of the
output layer that correspond to a different scenario.

4. EXPERIMENTS

4.1. Experimental setup

All experiments were done using the corpus introduced in
[8], which contains artificial mixtures created by mixing to-
gether single speaker utterances from the Wall Street Journal
0 (WSJ0) corpus. For every utterance a gain factor was ran-
domly chosen between 0 and 5 dB and utterances were sam-
pled at 8kHz. The length of the mixture was chosen equal
to the shortest utterance in the mixture as to maximize the
overlap. The training and validation sets contained 20,000
and 5,000 mixtures, respectively and where taken from the
si tr s set of WSJ0. The test set contained 3,000 mixtures
using 16 held-out speakers of the si dt 05 and si et 05
set. The log-magnitude (floored at -300) of the STFT with
a 32ms window length and 8ms hop size were used as fea-
tures and where normalized with mean and variance, calcu-
lated over the whole training set.

For both methods the deep learning network has 2 fully
connected bidirectional long short-term memory (BLSTM)
layers with 600 hidden units each, using a tanh activation
[16]. The parameters of these models where updated using
the Adam learning algorithm with initial learning rate 10−3,
β1 = 0.9, β2 = 0.999 and ε = 10−8. For DC the embedding
dimension was chosen at D = 20 and since the frequency di-
mension was F = 129, the total number of output nodes was
DF = 20 ∗ 129 = 2580. For uPIT there are SF = S ∗ 129
output nodes. Zero mean Gaussian noise with standard devia-
tion 0.2 was applied to the training features. Dropout was not
used since it did not improve the results in the experiments.
Early stopping was applied when the validation loss increased
for 4 consecutive times. The networks were trained using cur-
riculum learning [17], i.e. the networks were presented an
easier task before tackling the main task. Here, the network
was first trained on 100-frame non-overlapping segments of
the mixtures. This network was then used as initialization
when training over the full mixture. Performance for MSSS
was measured in signal-to-distortion ratio (SDR) improve-
ments on the test set, using the bss eval toolbox [18]. All
networks were trained using TensorFlow [19] and the code
for all the experiments can be found here:
https://github.com/JeroenZegers/Nabu-MSSS.
Results for all experiments are summarized in table 1 for same
gender mixtures (SG), mixtures with both genders (BG) and
all mixtures (av). Only results on all mixtures (av) will be
discussed.

4.2. Single scenario learning

First, some single scenario learning experiments are per-
formed using DC. Models are trained on 2 or 3 speakers and
testing is done on 2 and 3 speakers. It is noticed that testing
on 3 speakers when only seen mixtures of 2 speakers dur-
ing training, drastically degrades performance compared to

5381

algo- train valid. test set
rithm set set 2spk 3spk 2+3spk

SG BG av SG BG av SG BG av

DC

2spk 2spk 6.69 10.71 8.73 1.16 2.21 1.96 4.85 5.61 5.35
3spk - - - 1.23 2.18 1.96 - - -

3spk 2spk 5.67 10.06 7.89 - - - - - -
3spk 6.05 10.26 8.18 3.39 6.69 5.91 5.16 8.12 6.67

2+3spk 2+3spk 6.54 10.22 8.41 3.40 6.13 5.48 5.49 7.81 6.95
2+3spk half 2+3spk 5.93 10.07 8.03 2.81 5.83 5.11 4.89 7.53 6.57

uPIT

2spk 2spk 5.85 10.20 8.05 - - - - - -
3spk 3spk - - - 3.94 7.09 6.34 - - -

2+3spk 2+3spk 6.43 10.58 8.53 4.18 7.23 6.50 5.68 8.57 7.52
2+3spk half 2+3spk 5.90 10.27 8.11 3.91 6.86 6.16 5.24 8.22 7.14

Table 1. SDR improvement results for DC and uPIT for different train/validation/test sets. Results are shown for same gender
mixtures (SG), mixtures with both genders (BG) and all mixtures (av). When mentioned, only half of the training set is used.
Entries with ’-’ refer to a result that was not plausible or was deemed not relevant.

training on 3 mixtures (-3.95 dB). However, for the reversed
scenario, the drop in performance is much lower (-0.55 dB).
Being able to separate 3 speakers seems to partly rely on the
subtask of separating 2 speakers.

In the next experiment, the validation and testing scenario
differed from the training scenario. This is compared with the
experiment where the testing scenario differed from the train-
ing and validation scenario. This was done to see whether a
network trained on a specific single scenario would be able
to generalize better to a different scenario, should it not be
over-trained to the specific scenario. No significant differ-
ence was found however, so the conclusion from the previous
paragraph is retained.

Finally, the performance of uPIT and DC are compared
(only for within scenario, since uPIT cannot directly be used
out of scenario) and it is concluded that DC outperforms uPIT
for 2 speaker mixtures and uPIT is better for 3 speaker mix-
tures. Differences are rather small and possibly dependent on
the chosen network architecture.

4.3. Multi-scenario learning

For the multi-scenario learning experiments (train 2+3spk),
DC falls just short in comparison with the best solution for
2 speaker mixtures (-0.32 dB) and 3 speaker mixtures (-0.43
dB). However, for uPIT the multi-scenario learning experi-
ment slightly outperforms the best solution for both 2 speak-
ers (+0.48 dB) and 3 speakers (+0.16 dB). Not only has the
model succeeded to use training data from a scenario differ-
ent from test scenario, it has also managed to create a sin-
gle model for both test scenarios. The latter is emphasized
to make a distinction with the experiment where the BLSTM
layers would be fine tuned to the specific test scenario so pos-
sibly better performance could be achieved, but this would
lead again to the need of a model per test scenario (even
though data from different scenarios has been used). A reason

that uPIT is better suited for multi-scenario learning than DC
could be that while most parameters are shared over the sce-
narios, the output layer is still allowed to be scenario specific.
In following work the performance of DC for multi-scenario
learning with a scenario specific output layer will be evalu-
ated.

If only half of the training sets of both scenarios are used,
the total number of data samples for multi-scenario learning
remains the same compared to the single scenario cases. This
is to test whether a single model still performs well on multi-
ple scenarios if the total amount of data cannot be increased.
For DC the gap increases a little (to -0.70 dB for 2 speakers
and -0.80 dB for 3 speakers) and for uPIT it remains similar
(+0.06 dB for 2 speakers and -0.18 dB for 3 speakers). This
confirms that it is useful to share data between scenarios and
only a single model needs to be retained.

5. CONCLUSIONS

Generally, a model trained on one type of mixture performs
suboptimally on another type of mixture. In this paper it was
shown that it is useful for a single scenario task to include
data from another scenario. Furthermore, we conclude that
a single model can be used to cope with different scenarios
without significant loss in performance. We hope that other
researchers in the MSSS field will consider multi-scenario
learning and testing in the feature, instead of being restricted
to a single type of mixture.

6. ACKNOWLEDGEMENTS

This work was funded by the SB PhD grant of the Re-
search Foundation Flanders (FWO) with project number
1S66217N and the KULeuven research grant GOA/14/005
(CAMETRON).

5382

7. REFERENCES

[1] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, “An
experimental study on speech enhancement based on
deep neural networks,” IEEE Signal Process. Lett., vol.
21, no. 1, pp. 65–68, 2014.

[2] Felix Weninger, Florian Eyben, and Bjorn Schuller,
“Single-channel speech separation with memory-
enhanced recurrent neural networks,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 3709–3713.

[3] Yuxuan Wang and DeLiang Wang, “Towards scaling up
classification-based speech separation,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol.
21, no. 7, pp. 1381–1390, 2013.

[4] Xiao-Lei Zhang and DeLiang Wang, “A deep ensem-
ble learning method for monaural speech separation,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 24, no. 5, pp. 967–977, May
2016.

[5] Kamil Adiloğlu and Emmanuel Vincent, “Variational
bayesian inference for source separation and robust fea-
ture extraction,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 10, pp.
1746–1758, 2016.

[6] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson,
and Paris Smaragdis, “Deep learning for monaural
speech separation,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 1562–1566.

[7] Po-Sen Huang, Minje Kim, Mark Hasegawa Johnson,
and Paris Smaragdis, “Joint optimization of masks and
deep recurrent neural networks for monaural source sep-
aration,” IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), vol. 23, no. 12, pp.
2136–2147, 2015.

[8] John R Hershey, Zhuo Chen, Jonathan Le Roux, and
Shinji Watanabe, “Deep clustering: Discriminative em-
beddings for segmentation and separation,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 31–35.

[9] Yusuf Isik, Jonathan Le Roux, Zhuo Chen, Shinji
Watanabe, and John R Hershey, “Single-channel multi-
speaker separation using deep clustering,” in Inter-
speech 2016, 2016, pp. 545–549.

[10] Morten Kolbæk, Dong Yu, Zheng-Hua Tan, and Jesper
Jensen, “Multitalker speech separation with utterance-
level permutation invariant training of deep recurrent
neural networks,” pp. 1901–1913, 2017.

[11] Zhuo Chen, Yi Luo, and Nima Mesgarani, “Deep attrac-
tor network for single-microphone speaker separation,”
in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017,
pp. 246–250.

[12] Cory Stephenson, Patrick Callier, Abhinav Ganesh,
and Karl S. Ni, “Monaural audio speaker separa-
tion with source contrastive estimation,” CoRR, vol.
abs/1705.04662, 2017.

[13] Jeroen Zegers and Hugo Van hamme, “Improving
source separation via multi-speaker representations,” in
Interspeech 2017, 2017, pp. 1919–1923.

[14] Katerina Žmolı́ková, Marc Delcroix, Keisuke Ki-
noshita, Takuya Higuchi, Atsunori Ogawa, and Tomo-
hiro Nakatani, “Speaker-aware neural network based
beamformer for speaker extraction in speech mixtures,”
in Interspeech 2017, 2017, pp. 2655–2659.

[15] Diederik Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[16] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[17] Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston, “Curriculum learning,” in Proceed-
ings of the 26th annual international conference on ma-
chine learning. ACM, 2009, pp. 41–48.

[18] Emmanuel Vincent, Rémi Gribonval, and Cédric
Févotte, “Performance measurement in blind audio
source separation,” IEEE transactions on audio, speech,
and language processing, vol. 14, no. 4, pp. 1462–1469,
2006.

[19] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

5383

