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ABSTRACT

Supervised speech separation methods train learning machine
to cast the noisy speech to the target clean speech. Most
of them use mean-square error (MSE) as loss function.
However, MSE is not the perfect choice because it doesn’t
match the human auditory perception. Short-time objective
intelligibility (STOI) and perceptual evaluation of speech
quality (PESQ) are closely related to the human auditory
perception and widely used in speech separation research
as evaluation criteria. Therefore, STOI and PESQ may
be better choices for the loss function. However, they
are nondifferentiable functions which cannot be optimized
by the conventional gradient descent algorithm. In this
work, a gradient approximation method is used to calculate
the gradients of the STOI and PESQ. Then the calculated
gradients are used in the gradient descent algorithm to
optimize the STOI and PESQ directly. Experimental results
show the speech separation performance can be improved by
the proposed method.

Index Terms— Monaural speech separation, Short-
time objective intelligibility (STOI), perceptual evaluation
of speech quality (PESQ), gradient approximation

1. INTRODUCTION

Monaural speech separation separates target speech from
additive noise signal by using only one microphone. It has
been widely studied to improve the performance of various
signal processing systems, including hearing prosthesis,
mobile telecommunication, and robust automatic speech and
speaker recognition [1]. For a few decades, monaural speech
separation systems have achieved considerable performance
improvements, especially after formalizing it as a supervised
learning problem and using deep learning algorithms.

Early studies for monaural speech separation, e.g. spectral
subtraction, are mostly based on the mean-square error (MSE)
criterion [2] which can improve the perceptual speech quality.
However, these approaches typically assume that background
noise is stationary, i.e. its spectral properties do not change
over time, or are stationary than the speech at least. Therefore,
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they have difficulties in tracking non-stationary noises, which
limits its application in real-world environments.

In order to enhance the noisy speech in various noisy
environments, more powerful models are involved. Deep
neural networks (DNNs) and long short term memory
networks (LSTMs) can model the complicated relationship
between the input variables and the output targets. They
were successfully introduced to the speech separation area
as supervised speech separation, and obtained considerable
performance improvements. In these approaches, a learning
machine (DNN or LSTM) is trained to cast the acoustic
features of the noisy speech to a time-frequency mask, or
the spectrum of the clean speech, where these two categories
methods can be generally referred as the masking-based
and the mapping-based methods. Many works devoted to the
supervised speech separation, which covered the most aspects
of the supervised learning: Wang concluded the related works
on features [3] and training targets [4], and many works
studied the learning machine and its training methods [5-9].
But very few studies investigated the loss function, and most
of the learning-based method employ MSE. For example,
the masking-based method minimizes the MSE between the
estimation and the ideal mask target, and the mapping-based
method minimizes the MSE between the estimation and the
target clean spectrum.

Although a lot of works show the effectiveness of the
MSE. In fact, the MSE is not a perfect loss function to
evaluate the estimation, because it is not closely related to the
human auditory perception. The MSE has two weaknesses:
it treats the estimation elements independently and equally.
a) the MSE will lead to over-smooth speech trajectories
and may result in muffled sound quality and decreased
intelligibility [6]. Because the MSE measures are derived
from each time-frequency (T-F) unit separately rather than
from whole spectral trajectory. b) it treats every estimation
elements with equal importance, in fact, they are not. For
speech intelligibility, the distinguishable phones are more
important, and for speech quality, the isolated points are
more harmful which may lead to musical noise. The MSE
is usually defined in the linear frequency scale, but the
human auditory perception follows the Mel-frequency scale.
Therefore improving the human auditory perception quality
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or the speech intelligibility by minimizing the MSE is a game
which is not worth the candle.

To take over the shortnesses of the MSE, the new loss
function should take the whole speech or long duration into
its consideration and give different weights to the estimation
elements following the human auditory perception. Some
works [10, 11] have applied the element-wise weight function
and added penalty terms to the MSE. Kang proposed to take
the temporal and spectral variations equalization into the loss
function [12, 13]. However, these works do not exactly match
the requirements. Short-time objective intelligibility (STOI)
[14] and perceptual evaluation of speech quality (PESQ)
[15] are closely related to the human auditory perception
and are widely used in the speech separation research as
evaluation criteria. Because the STOI and PESQ evaluate the
separated speech as a whole, and give different importance
to the estimation elements according to the modeled human
auditory perception systems. We think that they would be
better loss functions than the MSE. If we can train the speech
separation model to improve the STOI and PESQ directly, we
can improve the evaluation criteria directly, too.

Taking the STOI and PESQ as the loss function is
straightforward, but training the model against these loss
functions is not simple because they are nondifferentiable.
It is very difficult to optimize a nondifferentiable function
by the conventional machine learning algorithms such as
the gradient descent. In this work, we propose to use a
gradient approximation method to calculate the gradient of
the STOI and PESQ loss function. Experimental results
show the effectiveness of the gradient approximation method.
Furthermore, results show the speech separation performance
can be improved by training against the STOI and PESQ loss
functions directly using the proposed method.

2. SYSTEM DESCRIPTION

2.1. Loss functions

STOI is a standard objective metric for speech intelligibility.
It shows a high correlation (r > 0.9) with speech
intelligibility scores in subjective listening tests, and is
widely used in the speech separation and enchantment
researches. STOI computes the correlation of short-time
temporal envelopes between the clean and separated speech.
It varies in [0, 1], and a higher value indicates the better
speech intelligibility.

PESQ is a standard objective metric for speech perceived
quality recommended by ITU-T (Recommendation P.862). It
was developed to predict the mean opinion scores (MOS)
in subjective listening tests. It shows a high correlation
(r = 0.9) with MOS on the noise-corrupted speech processed
via noise suppression algorithms [16], and is widely used in
the speech separation and enchantment researches. PESQ
measures speech quality by computing disturbance between

the clean speech and the separated speech using cognitive
modeling, which ranges in [-0.5, 4.5], with high values
indicating better quality.

We got the MATLAB source code for the STOI from the
author’s website, and the PESQ from the CD-ROM included
in [17]. We can access the STOI source code, while the PESQ
is provided as a set of protected function files (p-code), which
is a complete black-box to us. Restricted by the accessibility
and complexity of the loss functions, in order to optimize the
STOI and PESQ directly, we need an algorithm which does
not require the explicit expression of the loss functions.

2.2. Gradient approximation

Gradient descent is the most common choice for optimization
in the machine learning research. Gradient descent takes
steps proportional to the negative of the gradient of the loss
function at the current point, in where the gradient defines the
move direction. However, the gradient is not must be 100%
accurate, it can be an approximation. Accurate gradients
require the explicit expression of the loss functions, but
approximate gradients not.

The gradient is a generalization of the derivative. The
derivative measures the sensitivity to change of the function
output value with respect to a change in its argument. The
derivative of the f(z) at a is defined as:

df(z) fla+h) - f(a)
h

T = lim
dzx h—0
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It can be approximated by calculating with a small h:
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The gradient generalizes the derivative on multi-variable.
The gradient of the f(x) at a also can be approximated with
a similar method:
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Where z is a vector, € is a random vector sampled from the
unit Gaussian distribution, ¢ is a small constant, where h in
the formula (2) is replaced by o€ in multi-variable condition.
To give more confidence to the gradient approximation, we
sample the e more time (V) and get:

N
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This gradient estimator is known as simultaneous
perturbation stochastic approximation [18], parameter
exploring policy gradients [19], or zero-order gradient
estimation [20].
Appling the approximate gradient in the gradient descent
algorithm, it results in the algorithm 1, where 7' is the training
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epochs, N is the sample size. Specifically, we start with
some initial parameters wg. At each step we take a parameter
wy and explore its neighborhood by jittering w; with small
Gaussian noise, then get the approximate gradient of the loss
function f(w) at w;. Then we move the slightly along the
negative direction of the approximate gradient, which results
in a new parameter wy 1. This procedure is iterated until the
loss function is fully optimized.

Algorithm 1 Approximate gradient descent

Require: Learning rate o, noise variance 2, initial parameters wo
fort=1,2,3...,7 do
Sample €1, ... €, ~ N(0,1)
Compute F; = f(w: + o¢;) — f(we)
Set wiy1 < wy — aﬁ >oieq Fi/e
end for

forer=1,...,N

The approximate gradient descent algorithm treats the
loss function as a black-box. It does not require to access the
explicit expression of the loss function and does not require
the loss function is differentiable. With this algorithm, many
non-trivial loss functions, such as the STOI and PESQ in this
study, can be optimized directly.

3. EXPERIMENTAL RESULTS

We use the approximate gradient descent algorithm to train
speech separation models to maximize the STOI and PESQ
directly. Three models are involved: “STOI-model”, “PESQ-
model” and “combine-model”, whose loss function is STOI,
PESQ and the combination of them. To evaluate these
proposed models, we compare them with a model trained with
MSE loss function (“MSE-model”).

3.1. Dateset

We use 2000 randomly chosen utterances from the TIMIT
[21] training set as our training utterances, and use the TIMIT
core test set as our test utterances. In the TIMIT core test set,
there are 192 utterances, 8 from each of 24 speakers (2 males
and 1 female from each dialect region). We use a speech
shape noise (SSN) and 4 other noises from the NOISEX
dataset [22]: a babble noise, a factory noise (factoryl),
a destroyer engine room noise (destroyerengine), and an
operation room noise (destroyerops) for training. Aside from
the aforementioned noises, we also use an unseen factory
noise (factory2) and a tank noise (m109) from NOISEX to
evaluate generalization performance. To create the training
sets, we use random cuts from the first 2 minutes of each noise
to mix with the training utterances at -5 and 0 dB SNR. The
test mixtures are constructed by mixing random cuts from the
endmost 2 minutes of each noise with the test utterances at -5,
0 and 5 dB SNR, where 5 dB is an unseen SNR condition.

3.2. Model

The speech separation model is a long short-term memory
(LSTM) recurrent neural network (RNN). It has 3 layers and
there are 384 memory cells in each layer. This model is
trained to map the acoustic features of the noisy speech to the
amplitude spectrum of the clean speech. The input features
are based on the short time Fourier transform (STFT) of the
mixture signal. Under the sampling frequency of 16k Hz,
the STFT is obtained using the 320-point (20 ms) hamming
window with 50% overlap. As the STFT is conjugate
symmetric, in each frame, a preliminary feature vector is
formed using the amplitude of only the first 161 STFT
coefficients. Then the vector is cubic-rooted and normalized
to be zero-mean and unit variance. The training target is
STFT vector of the clean speech signal without cubic-rooting
and normalization.

We train the model 600 epochs with the Adam optimizer
[23] against the MSE loss function as the baseline, and
continue train this baseline model 10 epochs against the
MSE, STOI, PESQ and the combine loss function, as MSE-
model, STOI-model, PESQ-model, and combine-model. The
combine loss function is 5 - STOI + PESQ, where factor 5
is used to balance the two parts. In the approximate gradient
descent algorithm, we set o = 0.01, N = 20, T = 10.

3.3. Results

We first report the performance of the baseline model. In
Fig. 1, we list the average STOI and PESQ scores on all test
data after each training epoch. Its performance is improved
with the training. Its performance gains a lot in the first
several epochs, then the improving speed slows down. After
600 epochs training, the STOI and PESQ scores are 0.8183
and 2.3804, improve 0.1174 and 0.5826 compared to the
unprocessed noisy speech. The baseline model is comparable
with the state-of-the-art speech separation models.

We train the baseline model another 10 epochs with
different loss functions. The average STOI and PESQ
scores are shown in Fig. 2. The MSE-model continues
the changing trend of the baseline model. Finally, the MSE-
model improves neither the STOI or the PESQ scores. The
STOI-model improves the STOI score much but the PESQ
score few. The PESQ-model improves the PESQ score much
but the STOI score few. By combining the STOI and PESQ,
the combine-model improves both the STOI and PESQ
scores. As our expected, the combine-model cannot achieve
high STOI scores as the STOI-model, while interestingly, the
combine-model obtains a higher PESQ score than the PESQ-
model. It indicates the PESQ scores can be improved with
the help of the STOI loss function. All of these three models
improve the STOI and PESQ scores. Compared with the
MSE-mode, the STOI-model, PESQ-model, and combine-
model improve the STOI scores with 0.0129, -0.0007 and
0.0048, and improve the PESQ scores with 0.0053, 0.0520
and 0.0843, respectively.
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Fig. 1. Average performance of the baseline model.
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Fig. 2. Average performance of the models trained with
different loss function.

3.4. Loss Function Visualizing

With the approximate gradient descent algorithm, we can find
out what the STOI and PESQ actually care, by maximizing
the STOI and PESQ, directly.

We select a clean speech and use its waveform as our
target. Its amplitude spectrum is shown in Fig. 3(a). We start
from a random vector (pure white noise, no information about
the target are included), then optimize it to maximize the
STOI, PESQ and their combination. In this experiment, we
set 0 = 0.01, N = 20, T = 10000. The optimization results
are shown in Fig. 3 (b)-(d). Form Fig. 3, we can see that
the approximate gradient descent algorithm can maximize
the STOI, PESQ and their combination. The viewpoints of
the STOI and PESQ are different. They are located on the
different side of a seesaw, one rises and the other falls. The
combination loss function gets a balance between them.

By comparing the optimized and the target spectrum,
we can discover the important and unimportant parts under
different loss functions. We can see that both of the STOI
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(d) Combine loss function: STOI=0.9410, PESQ=4.0447

Fig. 3. Optimizing against different loss functions.

and PESQ give more value to the low-frequency parts as the
human auditory system. The STOI gives more importance
to the speech parts but few to the silence part, since STOI
removes silence before its calculation. Compared with the
STOI, the PESQ take more attention on the inactive T-F units
in the speech parts, because that these T-F units most likely to
damage the speech quality. Their combination pays attention
to both of their more valued parts.

4. CONCLUSION

The STOI and PESQ evaluate the speech intelligibility
and quality similar to the human audition system. These
two criteria may be better choices for the loss function in
the supervised speech separation system. But, they are
nondifferentiable functions which cannot be optimized by
the conventional machine learning algorithm. In this study,
an approximate gradient descent algorithm is proposed to
optimize them directly. Experimental results show the speech
separation performance can be improved by the proposed
method. The optimization algorithm treats the loss function
as a black-box, which does not require it is differentiable.
In this way, many nondifferentiable loss functions can be
used. The system with nondifferentiable modules can be
actually trained jointly. For example, in the robust speech
recognition system, the speech separation model can be
trained to maximize the recognition accuracy, directly.
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