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ABSTRACT

In recent studies, it has shown that speaker patterns can
be learned from very short speech segments (e.g., 0.3 second-
s) by a carefully designed convolutional & time-delay deep
neural network (CT-DNN) model. By enforcing the model
to discriminate the speakers in the training data, frame-level
speaker features can be derived from the last hidden layer.
In spite of its good performance, a potential problem of the
present model is that it involves a parametric classifier, i.e.,
the last affine layer, which may consume some discriminative
knowledge, thus leading to ‘information leak’ for the feature
learning. This paper presents a full-info training approach
that discards the parametric classifier and enforces all the dis-
criminative knowledge learned by the feature net. Our ex-
periments on the Fisher database demonstrate that this new
training scheme can produce more coherent features, leading
to consistent and notable performance improvement on the s-
peaker verification task.

Index Terms— speaker recognition, deep neural net-
work, speaker feature learning

1. INTRODUCTION

Automatic speaker verification (ASV) is an important biomet-
ric authentication technology and has found a broad range of
applications [1, 2]. The current ASV methods can be cate-
gorized into two groups: the statistical model approach that
has gained the most popularity [3, 4, 5], and the neural model
approach that emerged recently but has attracted much inter-
est [6, 7, 8].

Perhaps the most famous statistical model is the Gaus-
sian mixture model-universal background model (GMM-
UBM) [3]. It factorizes the variance of speech signals by
the UBM, and then models individual speakers conditioned
on that factorization. Subsequent models design subspace
structures to improve the statistical strength, including the
joint factor analysis approach [4] and the i-vector model [5].
Further improvements were obtained by either discriminative
models (e.g., SVM [9] and PLDA [10]) or phonetic knowl-
edge transfer (e.g., the DNN-based i-vector method [11, 12]).
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The neural model approach has also been studied for
many years [13, 14], however it was not as popular as the
statistical model approach until recently training large-scale
neural models becomes feasible. The primary success was
reported by Ehsan et al. on a text-dependent task [6], where
frame-level speaker features were extracted from the last
hidden layer of a deep neural network (DNN), and utterance-
based speaker representations (‘d-vectors’) were derived by
averaging the frame-level features. Learning frame-level s-
peaker features is a key merit, which paves the way to deeper
understanding of speech signals. This direction, however, was
not further investigated, as researchers quickly found that the
relatively low performance of the d-vector approach is due
to the simple back-end, i.e., the average-based utterance rep-
resentation. Therefore, many researchers turn to seek for
more complicated back-end models, e.g., Liu et al. [15] used
DNN features to build conventional i-vector systems. Other
researchers focused on the end-to-end approach that learned
utterance-level representations directly, e.g., [7, 16, 17].

In spite of the reasonable success of these ‘fat back-end’
methods, we follow the feature learning direction originated
by Ehsan et al. [6]. Our assumption is that if speaker traits are
short-time identifiable and can be learned at the frame-level,
many speech processing tasks will be much simpler, includ-
ing ASV. Fortunately, our recent study [8] showed that this
frame-level speaker feature learning is feasible: with a short
speech segment (0.3 seconds), highly representative speaker
features can be learned by a convolutional & time-delay DNN
(CT-DNN) structure. Further study showed that these speaker
features are rather powerful: they can discriminate speakers
by a short cough or laugh [18], and work well in cross-lingual
scenarios [19]. We also carefully compared the feature learn-
ing approach and the end-to-end approach, and found that the
feature learning approach generally performed better, partly
due to the more effective training scheme [20].

This paper follows the deep feature learning thread and
extends our previous work in [8]. The motivation is that the
present CT-DNN architecture involves a parametric classifier
(i.e., the last affine layer) when training the feature learning
component, or feature net. This means that part of the knowl-
edge involved in the training data is used to learn a classifier
that will be ultimately thrown away, leading to potential ‘in-
formation leak’. This paper will present a full-info training
approach that removes the parametric classifier so enforces
all the discriminative knowledge to be learned by the feature
net. Our experiments on the Fisher database demonstrated
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that this new training scheme can produce more coherent fea-
tures, leading to notable and consistent performance improve-
ment on the speaker verification task.

In the next section, we will briefly describe the CT-DNN
model that we proposed for speaker feature learning, and then
present the full-info training approach in Section 3. The ex-
periments are reported in Section 4, and the paper is conclud-
ed in Section 5.

2. DEEP SPEAKER FEATURE LEARNING

Fig. 1 shows the CT-DNN structure that was presented in [8]
and has been demonstrated in several studies [18, 19, 20].
The model consists of a convolutional (CN) component and
a time-delay (TD) component. The output of the TD com-
ponent is projected into a feature layer. The activations of
the units of this layer, after length normalization, form frame-
level speaker features. During model training, the feature lay-
er is fully connected by an affine function to an output layer
whose units correspond to the speakers in the training data,
which is essentially a classifier that discriminates the target
speakers in the training data on the basis of the input speech
frame. The training is performed to maximize the cross en-
tropy of the classifier output and the ground truth label. We
have demonstrated that the speaker features inferred by the
CT-DNN structure is highly discriminative [8], confirming
our conjecture that speaker traits are largely short-time spec-
tral patterns and can be identified at the frame level.

Log-linear
Classifier

Convolutional (CN)
Component

Time-delay (TD)
Component

Feature
Layer

Feature net

Frame-level
Speaker features

Fig. 1. The CT-DNN structure used for deep speaker feature
learning.

3. FULL-INFO TRAINING

3.1. Method

The existing speaker feature learning models, either the vanil-
la structure proposed by Ehsan [6] or our CT-DNN model [8],
involve two components: a feature net and a classifier, as
shown in Fig. 1. The feature net produces speaker-sensitive
features, and the classifier uses these features to discriminate
the speakers in the training data. In the CT-DNN case, the
features are produced from the last hidden layer, and the clas-
sifier is a log-linear model where the non-linear activation
function is softmax. We emphasize that the feature net and
the classifier are jointly trained. This is optimal if our task is

to discriminate the speakers in the training set, however when
the features are used in other tasks, e.g., to discriminate or
authenticate other speakers, the joint training will be subop-
timal. This is because the classifier involves free parameters,
so part of the discriminant information will be learned by the
classifier, which, unfortunately, will be thrown away when
performing identification/verification tasks on other speakers.

A possible solution is to discard the parametric classifier
and using the speaker features to classify the speakers direct-
ly. Specifically, if the frame-level speaker features have been
derived, each speaker s in the training set can be represent-
ed by the average of all the speaker features belonging to this
speaker, given by:

v(s; θ) =
1

|E(s)|
∑
x∈E(s)

f(x; θ), (1)

where E(s) is the set of speech frames belonging to speaker
s, and f(x; θ) is the speaker feature of frame x, produced by
the feature net parameterized by θ. By these speaker vectors
v(s; θ), each speech frame x can be classified by a simple
classifier as follows:

p(s|f(x; θ)) = ecos(f(x;θ),v(s;θ))∑
s′ e

cos(f(x;θ),v(s′;θ))
, (2)

where cos(·, ·) represents cosine distance. The cross entropy
between the classification output p(s|f(x; θ)) and the ground
truth label s can be computed and used as the cost function to
train the system, formulated by:

L(θ) =
∑
t

log p(s(t)|f(x(t); θ)) (3)

where x(t) and s(t) are the t-th speech frame and the corre-
sponding ground truth label. Note that cost function involves
only θ as free parameters, so all the discriminative knowledge
provided by the training data is solely learned by the feature
net. For this reason, we call this approach full-info training.

3.2. Implementation

Optimizing Eq. (3) is not simple, as θ appears in the speaker
vectors v(s; θ). We design an iterative scheme that can perfor-
m the optimization as a usual neural net training. As shown
in Fig. 2, we keep the network structure (here CT-DNN) un-
changed. After each training epoch, the speaker vectors v(s)
are re-estimated according to Eq. (1). These speaker vectors
are then used to replace the parameters of the log-linear clas-
sifier (the last affine layer), and a new epoch is started follow-
ing the regular back-propagation algorithm. Note that v(s; θ)
should be normalized to the same length when they are used
to update the classifier, otherwise the forward computation of
the last affine layer (classifier) does not equal to Eq. (2).

We experimented with various configurations to imple-
ment this iterative training, and found that allowing the pa-
rameters of the classifier to be updated within an epoch works
slightly better than keeping them fixed. Another experience is
that the a pre-trained CT-DNN model can not be used as the
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Fig. 2. Iterative training scheme for full-info feature learning.

initial for the full-info training; a random initialization for the
feature net is required, and the training is ‘warmed up’ by us-
ing the speaker vectors produced by the pre-trained CT-DNN
model. Once this warm-up training converges, the iterative
full-info can be started.

3.3. Discussion

The full-info training possesses several advantages: First-
ly, all the discriminant knowledge involved in the training
data is learned from the feature net, so the training data is
used more effectively; Secondly, by the full-info training,
the frame-level features are encouraged to aggregate to their
corresponding speaker vectors, hence more coherent; Thirdly,
the distance metric used in the full-info training (cosine dis-
tance) is consistent with the measure used in the test phase of
ASV. This improved consistency is important when applying
speaker features to the ASV task.

We note that the full-info training has been used in some
end-to-end approaches [7, 17], though we focus on learn-
ing frame-level features rather than utterance-level represen-
tations, and learning from multiple speakers rather than s-
peaker pairs as most of the end-to-end ASV approaches do.

4. EXPERIMENT

4.1. Database

The Fisher database was used in our experiments. The train-
ing set and the evaluation set are presented as follows.

• Training set: It consists of 2, 500 male and 2, 500 fe-
male speakers, with 95, 167 utterances randomly se-
lected from the Fisher database, and each speaker has
about 120 seconds speech segments. This dataset was
used for training the UBM, T-matrix, and PLDA mod-
els of the i-vector system, and the CT-DNN model of
the d-vector system.

• Evaluation set: It consists of 500 male and 500 female
speakers randomly selected from the Fisher database.
There is no overlap between the speakers of the train-
ing set and the evaluation set. For each speaker, 10

utterances are used for enrollment (about 30 seconds)
and the rest are for test.

We test two scenarios: a short-duration scenario and a
long-duration scenario. Both scenarios involve 3 test con-
ditions. For the short-duration scenario, the test conditions
are ‘S(20f)’, ‘S(50f)’ and ‘S(100f)’, where the test utterances
contain 20, 50 and 100 frames respectively, or equivalently
0.3, 0.6 and 1.1 seconds. For the long-duration scenario, the
test conditions are ‘L(3s)’, ‘L(9s)’ and ‘L(18s)’, where the
length of the test utterances is 3, 9 and 18 seconds, respec-
tively.

All the test scenarios/conditions involve pooled male- and
female-dependent trials. Gender-dependent tests exhibit the
same trend, so we just report the results with the pooled trials.
Note that in the ‘S(20f)’ condition, the length of the test utter-
ances (20 frames) is the size of the effective context window
of the CT-DNN model, i.e., only one single speaker feature
can be derived.

4.2. Settings

We build two baseline systems: an i-vector system and a d-
vector system based on the CT-DNN structure. For the i-
vector system, the feature involves 19-dimensional MFCCs
plus the log energy, augmented by the first and second order
derivatives. The UBM consists of 2, 048 Gaussian compo-
nents, and the dimensionality of the i-vector space is 400. The
entire system is trained following the Kaldi SRE08 recipe.
PLDA is used in scoring.

For the d-vector system, the raw feature involves 40-
dimensional Fbanks, and a symmetric 4-frame window is
used to splice the neighboring frames. The number of output
units is 5, 000, corresponding to the number of speakers in
the training data. The speaker features are in 400 dimen-
sions, equal to the i-vectors. The utterance-level d-vectors
are derived by averaging the frame-level speaker features.
The Kaldi recipe to reproduce our results has been published
online1. The scoring approach is the cosine distance on either
the original 400-dimensional d-vectors or 150-dimensional
LDA-projected vectors. Our previous experiments show that
LDA can normalize the within-speaker variation, which in
turn normalizes the scores of different speakers. This is im-
portant for speaker verification, as it is based on a global
threshold and so requires scores comparable across speakers.

4.3. Main results

The results in terms of equal error rate (EER%) are reported
in Table 1. It can be observed that the d-vector baseline works
better than the i-vector baseline in the short-term conditions,
but worse in long-term conditions. This tendency is the same
as in the previous studies [8, 17].

With the full-info training, we can observe that the per-
formance of the d-vector system is improved in a consistent
way. Interestingly, in the short-term test conditions, the per-
formance with the cosine distance is not improved, but after

1http://project.cslt.org
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LDA projection, the performance outperforms the baseline.
This indicates that the full-info training does not necessari-
ly improve the strength of single speaker features; instead, it
encourages more coherent and generalizable features. This is
consistent with our discussion in Section 3.3.

Table 1. EER results with different models and training meth-
ods on 6 test conditions.

EER%
Models Scoring S(20f) S(50f) S(100f)
i-vector PLDA 16.84 10.41 6.54
d-vector Cosine 7.89 6.38 4.55

LDA 8.15 5.05 3.38
d-vector Cosine 9.48 7.45 4.74
+ Full-info Training LDA 7.53 4.36 2.85
Models Scoring L(3s) L(9s) L(18s)
i-vector PLDA 3.52 1.20 0.89
d-vector Cosine 3.85 2.90 2.69

LDA 2.58 1.95 1.79
d-vector Cosine 3.95 2.48 2.23
+ Full-info Training LDA 2.14 1.64 1.54

4.4. Analysis

4.4.1. Training process

Fig. 3 presents the change of the validation-set frame accuracy
during the iterative training process (the trend on the training
set is the same). The epoch 0 represents the basic CT-DNN
model, which can be regarded as a ‘warm-up’ model. Once
this warm-up training converges, the iterative full-info train-
ing will be started.

It can be observed that the accuracy is increased within
each epoch, and after each epoch, the initial accuracy starts
from a higher value than the previous epoch. This indicates an
increased coherence between the frame-level speaker features
and the speaker vectors. Note that the big gap between the
accuracies of the start and end stage of an epoch is due to the
adaptable last affine layer.
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Fig. 3. The change of frame accuracy on the validation set
during the iterative full-info training.

The EER results on the 6 test conditions during the iter-
ative training process are shown in Fig. 4. We can observe
a consistent and notable EER reduction on all the test condi-
tions.

4.4.2. Visualization

T-SNE [21] is used to visualize the speaker features in the
2-dimensional space. In Fig. 5, we choose several utterances
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Fig. 4. EER results on 6 test conditions with iterative full-info
training.

from 20 different speakers, and draw the speaker features pro-
duced with and without the full-info training. It can be ob-
served that the speaker features are highly discriminative, no
matter whether the full-info training is applied. However, the
full-info training produces more coherent features. Paying at-
tention to the circled features, we observe that there are two s-
peakers (red and cyan) whose features are located in separated
areas in the left picture while aggregate together in the right
picture. This clearly demonstrates that the full-info training
encourages more coherent features.
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Fig. 5. Deep speaker features are plotted by the t-SNE, with
each color representing one speaker. Here (a) shows features
produced by the original CT-DNN model, and (b) shows fea-
tures produced by the CT-DNN model trained with full-info
training.

5. CONCLUSIONS

This paper proposed a full-info training approach that en-
forces all the speaker discrimination knowledge provided by
the training data being learned by the feature net, thus avoid-
ing the ‘information leak’ caused by the parametric classifi-
er involved in the conventional learning structure. We tested
the method on the speaker verification task with the Fisher
database, and found that it delivered consistent and notable
performance improvement. Methods that encourage more co-
herent features are under investigation.
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