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ABSTRACT

In this paper, given the speaker bottleneck feature vectors extracted
with speaker discriminant neural networks, we focus on using
the sequential speaker characteristics for text-dependent speaker
verification. In each evaluation trial, speaker supervectors are
used as the representations of the sequential speaker characteristics
rendered in the compared speech utterances. To this end, dynamic
time warping is used to warp the variable-length speaker feature
vector sequences of the utterances to the same length. Thereafter
for every utterance, a speaker supervector can be obtained as the
concatenation of its speaker feature vectors. We use Euclidean
distance and support vector machine (SVM) to compute the decision
score on the speaker supervectors. Our experiments on a Microsoft
internal keyword-spotting database showed the effectiveness of the
proposed speaker supervector for text-dependent speaker verification.
Moreover, when SVM backend was used in scoring, the speaker
supervector achieved the best EER performance 1.627%, better than
the combination of i-vector and probabilistic linear discriminant
analysis.

Index Terms— Text-dependent speaker verification, sequential
speaker characteristics, speaker supervector, dynamic time warping

1. INTRODUCTION

As speaker verification is becoming more and more commercialized,
the demand for speaker verification systems on short utterances is
increasing. The inability of text-independent speaker verification
methods to attain acceptable performance with utterances of short
durations revived the application interests for text-dependent speaker
verification. To name a few, Microsoft, Google and Apple have
released their speaker verification products with the lexical contents
of the speech utterances to be “Hey Cortana”, “OK Google” and
“Hey Siri” respectively. In such application scenarios, in order
to obtain enough speech for acceptable performance, multiple
utterances are always used for speaker enrollment. Previously, the
methods in text-independent speaker recognition have been adjusted
to the text-dependent scenario successfully, including Gaussian
mixture model – Universal background model (GMM–UBM) [1,
2, 3], joint factor analysis (JFA) [4, 5, 6] and the combination
of i-vector and probabilistic linear discriminant analysis(PLDA)
[7, 8, 9, 10].

Recently, neural networks (NNs) trained for speaker discrimination
have been explored in text-dependent speaker verification [11,
12, 13, 14]. In [11] and [12], the neural networks were trained
to classify among the training speakers. In [13] and [14], the

networks were trained in an end-to-end manner which inferred
whether the speakers in the input utterance pairs were from the
same or different speakers. Basically, whether the network is
trained to classify among the predefined speaker set [11, 12] or to
distinguish between the hypotheses of whether the input utterances
are from the same speaker or not [13, 14], the hidden layers are
endorsed with the capability of speaker discriminative information
extraction. As such, usually speaker feature vectors can be extracted
as the output of a bottleneck layer in a speaker discriminant neural
network. How to make use of the speaker feature vectors for speaker
verification forms an interesting issue that deserves further research.
In [11], given the feature sequence extracted from a specific speech
utterance, the outputs of the last hidden layer were averaged to be
the so-called d-vector. Like i-vector, the d-vector contributes a kind
of fixed-length representation of the speaker characteristics rendered
in a speech utterance.

The models of speaker characteristics aforementioned are built
on the accumulated statistics on the acoustic and speaker feature
vectors while omitting the sequential correlation among the speech
frames. Unlike them, in earlier researches, the sequential correlation
was modeled and used in text-dependent speaker verification such as
dynamic time warping (DTW) [15] and hidden Markov model(HMM)
[16, 17]. Among others, DTW [18] provided an efficient and
effective speaker comparison in a sequential manner. Nevertheless,
the feature used in [18] was the acoustic feature which is rich in
phonetic information, such as perceptual linear prediction (PLP)
and Mel-frequency cepstral coefficients (MFCC). In such a manner,
the alignment and speaker comparison in DTW was dominated by
phonetic information. Although it has been widely acknowledged
that the speaker comparison should be phone-related, template
matching on acoustic feature still suffers from the vulnerability
brought by the pronunciation and articulation mismatch between the
compared speech utterances. Moreover, when the data conditions of
the speech utterances are complex, e.g., variant channels and noise
are involved, due to the lack of channel compensation techniques,
the performance of the acoustic feature vectors will be unacceptable.

In this paper, we further pursue how to better make use of
the speaker feature vectors extracted with NNs for text-dependent
speaker verification. In an evaluation trial, given the sequences of
speaker feature vectors extracted from the enrollment and test speech
utterances, we firstly resort to DTW to align them to the same
length. Then, a speaker supervector, which is the concatenation
of the speaker feature vectors for each utterance, is used as the
representation of the sequential speaker characterisitcs rendered in
it. Compared with d-vector, the advantage of the speaker supervector
is that the sequential correlation among the frames can be exploited
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for speaker comparison. Besides, compared to the acoustic features
as used in [18], the advantages of the speaker supervector lies
in two aspects. Firstly, the alignment and speaker comparison
between the enrollment and test utterances is dominated by the
speaker characteristics instead of the pronunciation and articulation.
Secondly, since the speaker discriminant neural network which
is used for speaker feature extraction sees variant channel and
noise conditions rendered in the training utterances, the speaker
feature vectors can be robust to channel and noise variation. As
for the testing phase, we apply two scoring methods on the speaker
supervectors. One is to use the scaled Euclidean distance directly
as the final decision score. The other is to use the support vector
machine (SVM) for discriminative scoring [19]. We carried out our
experiments on a Microsoft internal keyword-spotting database with
the keyword “Hey Cortana”. Six utterances were used for speaker
enrollment and one for testing. The results showed that the proposed
speaker supervector could achieve better performance than d-vector;
and the sequential modeling on speaker feature was better than
acoustic feature in speaker comparison. Moreover, when combined
with SVM as backend, the speaker supervector outperformed the
i-vector/PLDA cascade.

The rest of this paper is organized as follows. Section 2 gives
a brief description of the existing vectors for speaker characteristic
representation. In Section 3, we propose the speaker supervector.
The experimental results are presented in Section 4. We reach our
conclusions and describe the future work in Section 5.

2. PRIOR WORKS

2.1. I-vector

Given the feature sequence extracted from an utterance O, its mean
supervector m can be modeled as follows

m = m0 +Tw (1)

where T is the total variability matrix and w is the latent variable
whose prior distribution is a standard normal distribution as wr ∼
N (0, I). m0 is the mean supervector of the UBM. The i-vector
of O is estimated as the posterior mean of w which provides a
fixed-length and always reduced-dimension representation for the
speech utterance O.

2.2. D-vector

Fig. 1 illustrates the graphical model of the neural network for
speaker feature extraction. The neural network always takes acoustic
feature vectors as input. The nodes in the output layer represent the
set of speakers in the training set, denoted as {spk1, spk2, ..., spkN}
where N is the number of training speakers. The neural network
is trained to classify among the N speakers with the cross-entropy
loss function. The last hidden layer is a bottleneck layer whose
dimension is always smaller than the others, denoted as b in Fig.
1. Given an input frame, the output of the bottleneck layer is
estimated as the representation of its speaker information, named as
speaker feature vector in this paper. The hidden layers of the neural
network can be full connection layers, long short-term memory
(LSTM) cells and convolutional layers, resulting in DNN, recurrent
neural network (RNN) and convolutional neural network (CNN)
respectively.

In [11], the neural network is specified to be DNN. Given
the sequence of acoustic feature vectors extracted from a speech
utterance O, the speaker feature vectors B =

∪T
t=1 bt can be

N N

o

Fig. 1. Paradigm of neural networks for speaker classification, where
o is the input observation; N is the number of training speakers and
b is the bottleneck layer.

estimated where T is be the number of frames. The sequence of
speaker feature vectors are then averaged to be the d-vector as a
compact representation of the speaker characteristics rendered in O.
Note that from the perspective of modeling, the d-vector can be seen
as the statistical mean vector taken from a Gaussian which models
the speaker characteristics distribution in O.

3. SPEAKER SUPERVECTOR

In this section, based on the speaker feature vectors extracted with
the neural network illustrated in Fig. 1, we describe how to obtain
the speaker supervectors for the utterances in an evaluation trial and
how to score them for speaker similarity measurement.

3.1. Speaker supervector

For simplicity, in this subsection, we focus on the scenario where
only one utterance is used for speaker enrollment. Denote the two
speech utterances for identity claim as O1 and O2 and the speaker
feature vectors extracted from them as B1 =

∪T1
t=1 b1 (t) and B2 =∪T2

t=1 b2 (t), with T1 and T2 to be the number of frames respectively.
Choosing B1 to be the template, the best warping function that warps
the axis from B1 to B2 is the one that results in the smallest distance
p∗ which is mathematically defined as:

p∗ = min
{w(t)}

T1∑
t=1

E (b1 (t) ,b2 (w (t))) (2)

Here, E is the distance function, specified to be Euclidean distance
in the paper. mt = w (t) is the warping function on the axises from
B1 to B2, resulting in the warped B2 to be as follows,

B2 ←
T1∪
t=1

b2 (mt) (3)

The warped B2 is in the same length as the template B1, i.e., T1.
The speaker feature vectors in B1 and the warped B2 are

then concatenated respectively to be the speaker supervectors,

i.e., v1 =
[
(b1 (1))

T , (b1 (2))
T , ..., (b1 (T1))

T
]T

and v2 =[
(b2 (m1))

T , (b2 (m2))
T , ..., (b2 (mT1))

T
]T

, representing the
sequential speaker characteristics rendered inO1 andO2. It’s worth
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pointing out that in our work, the speaker supervectors here are
obtained among the compared utterances in individual evaluation
trials. So different from our common sense in the GMM–UBM
framework where the Gussian mean supervectors are of fixed length
for all utterances, the lengths of the speaker supervectors here are the
same within each trial but always different among different trials.

Note that, we use the linear output of the bottleneck layer as our
speaker feature vector. Before being aligned by DTW, the speaker
feature vectors are normalized with rank ordering within each frame
[20]. To be specific, a speaker feature vector d can be specified to
its dimensions as b = [b1, ..., bD]T with D to be its dimensionality.
The D elements are firstly ranked with the rank order of the d-th
element to be Rd. The normalized value for bd will be:

bd ←
D + 1

2
−Rd

D
(4)

where d = 1, ..., D.

3.2. Scoring

Given the N (N ≥ 1) enrollment utterances and the test utterance in
an evaluation trial, denote the sequences of speaker feature vectors
extracted from them as

∪N
n=1 B

e
n and Bt where the superscripts e

and t stands for enrollment and test separately. One utterance is
randomly chosen from the enrollment utterances to be the template,
which has T frames. The rest enrollment and test sequences are then
warped to the template. Via concatenation, the speaker supervectors
for the enrollment and test utterances can be obtained to be

∪N
n=1 v

e
n

and vt respectively. Two scoring methods are then applied for
decision score computation, i.e. Euclidean distance scoring and
SVM backend.

In Euclidean distance scoring, the enrollment supervectors are
averaged to be the speaker supervector of the enrollment speaker as
ve = 1

N

∑N
n=1 v

e
n. The Euclidean distance between ve and vt is

computed and then scaled by the number of frames T to be the final
decision score as follows:

s =

∥∥ve − vt
∥∥
2

T
(5)

On the speaker supervectors, SVM can be applied as the backend
for discriminative speaker modeling and scoring. Firstly, an SVM
is trained using the enrollment supervectors

∪N
n=1 v

e
n to be the

enrollment speaker model with the discriminant function to be
s = fe (v; θe) where θe denotes the set of model parameters. Given
the test supervector vt, s = fe

(
vt; θe

)
is computed to be the final

decision score. See [19] for more details about SVM.

4. EXPERIMENTS

4.1. Experimental setup

Our experiments were carried out on the Microsoft keyword-spotting
live speech dataset. The speech segments of the text “Hey Cortana”
were identified and separated from the speech utterances using a
keyword spotter. As for the keyword spotter, we used a DNN
for acoustic modeling. The input layer was the current frame
spliced with 2 frames on its left and right sides respectively. The
DNN was trained to discriminate among the 9 monophones in
“Hey Cortana”. Together with a node for silence, there were 10
nodes in the output layer, leading the structure of the DNN to be
190(5 × 38) − 512 − 128 − 64 − 10. The first subgraph in Fig. 2
illustrates the duration distribution of the keyword speech segments

Fig. 2. Duration distribution of the keyword speech segments and
the number of utterances per speaker in the training subset

detected by the keyword spotter. The average duration per segment
was about 0.6 seconds. A training and an evaluation sets were
built exclusively to make sure that the speakers in the two subsets
were not overlapped. The training set was composed of 193 hours
of utterances from 8, 404 speakers with at least 70 utterances for
each speaker. The second subgraph in Fig. 2 presents the number
of utterances per speaker in the training subset. The number of
utterances per speaker ranges from 70 to 1, 968. Among them,
8, 320 speakers have less than 500 utterances. In evaluation, 1, 000
speakers were selected as the enrollment speakers. 6 utterances
were used for speaker enrollment and 1 was used for testing in each
verification trial. On average, 3 target and 17 nontarget trials were
composed for every enrollment speaker, resulting in 2, 987 target
and 16, 036 nontarget trials in total. The equal error rate (EER) and
detection cost function (DCF) [21] were used as the performance
criteria. For DCF, we considered the operation points of NIST
SRE’08, SRE’10 and SRE’12.

The acoustic feature we used was 13-dimensional MFCC static
coefficients appended with the first and second derivatives. After
appending, C0 was removed, leaving the 38-dimensional raw MFCC
feature vectors. However, according to the results reported in [22],
in order to achieve the new state-of-the-art performances on the
systems that were to be compared in our experiments, the raw
MFCC feature vector was concatenated with its corresponding
phonetic bottleneck vector. The phonetic bottleneck vector was
extracted with the DNN used in our keyword spotter. The linear
output of the last hidden layer of dimension 64 was estimated
for each frame and concatenated with its MFCC feature vector.
Thereafter, principal component analysis (PCA) [23] was exerted on
the 102-dimensional concatenated vectors to reduce its dimension to
72. The dimensionality of 72 was chosen from a set of experiments
as it gave the best performance. In the following, the 72-dimensional
combination of MFCC and phonetic bottleneck vector is referred to
BN–MFCC for brevity.

4.2. Speaker supervector

The DNN for speaker feature extraction was trained on the 193-hour
training dataset using the 38-dimensional raw MFCC feature. Every
frame was spliced with its contextual 20 frames on both left and right
sides as the input to the DNN. There were 8, 404 nodes in the output
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softmax layer, each representing a training speaker. There were 4
hidden layers of 1, 024 nodes, succeeded by a bottleneck layer of 80
nodes. Above all, the structure of the network was 1558 (41× 38)−
1024 − 1024 − 1024 − 1024 − 80 − 8404. 80 was chosen since
it gave the best performance in our experiments regarding the size
of the bottleneck layer. In the warping between the speaker vector
sequences, the maximum and minimum slopes were 2 and 1/2.

The performance of the speaker supervector was compared with
two systems. The first one was d-vector system where the 6 d-vectors
of enrollment utterances were averaged to represent the enrollment
speaker and its Euclidean distance with the test d-vector was used
as the score. The other system is similar with speaker supervector,
except for the feature vectors. In this experiment, we replaced
the speaker feature vectors with the 72-dimensional BN–MFCC
feature vectors. Following the same operations that constructed
speaker supervectors, we obtained BN–MFCC supervectors from
the BN–MFCC feature vectors for the enrollment and test utterances
in an evaluation trial. Euclidean distance as described in Section
3.2 was used for decision score computation on the two kinds
of supervectors. It’s worthy to mention that, in our experiments,
we found that rank ordering normalization on the speaker and
BN–MFCC feature vectors as described in Section 3.1 was crucial
to the performances of the corresponding systems. Hence, rank
ordering normalization was exerted on the speaker and BN–MFCC
feature vectors before they were averaged to d-vector or warped
to supervector. The results of the three vectors, i.e., d-vector,
BN–MFCC and speaker supervectors, are presented in Table 1.

Table 1. Performance comparison of d-vector, BN–MFCC
supervector and speaker supervector

EER(%) DCF08 DCF10 DCF12
d-vector 2.099 0.102 0.407 0.312

supervector BN–MFCC 3.407 0.134 0.402 0.310
speaker 1.893 0.098 0.380 0.293

From the results, we can see that the proposed speaker supervector
definitely achieved the best performance among the three methods.
In terms of EER, it was 9.7% and 44.4% relatively better than
d-vector and BN–MFCC supervector respectively. The superiority
of speaker supervector over d-vector informs us that the sequential
speaker information within the speech utterances is a part of speaker
characteristics and can be used for better speaker verification
performance. Meanwhile, the better performance achieved by
speaker supervector than BN–MFCC supervector infers us that
for sequential speaker characteristic modeling and comparison,
speaker feature is better than BN–MFCC. According to our analysis,
the reason for such a superiority lies three aspects. Firstly, the
alignment between the compared speech utterances is dominated by
speaker information. Secondly, the similarity score is computed on
the features vectors representing speaker characteristics. Thirdly,
since the speaker feature vector was extracted with the DNN trained
on a large scale of speech utterances, it’s more robust to channel
variation and noise in our live dataset than the MFCC feature.

4.3. SVM backend

We further experimented on SVM as the backend on the speaker
supervector. Given the multiple enrollment speaker supervectors in
an evaluation trial, an SVM was trained as the enrollment speaker
model using the libsvm toolkit [24]. Linear kernel was used in

the SVM. 1, 200 utterances from the speakers that didn’t appear in
evaluation were used as imposters in SVM training.

In addition, the performances of the conventional GMM–UBM
and i-vetcor/PLDA cascade were also compared. The BN–MFCC
feature vector was used in the two experiments. The UBM was
composed of 128 Gaussian components with diagonal covariance
matrices. The rank of the total variability matrix was 400. In the
following PLDA, the speaker and channel subspaces were of ranks
200 and 400 respectively and the residual covariance matrix was
diagonal. In order to keep a balance among the training speakers
and also be time-efficient, 70 utterances were randomly chosen
per speaker from the 8, 404 training speakers to train the UBM,
total variability matrix and PLDA. In our multi-session scenario, the
statistics computed on the 6 enrollment utterances were accumulated
for the adaptation from UBM to speaker-dependent GMM. In
the i-vector system, an i-vector was estimated for each of the 6
enrollment utterances and their mean was then taken to be the
i-vector of the enrollment speaker [25].

The performances of the Euclidean distance and SVM backend
on speaker supervectors are given in Table 2 together with the
GMM–UBM and i-vector/PLDA. From the results, we can see that
when Euclidean distance is used for scoring, the speaker supervector
outperformed GMM–UBM. For the speaker supervector, the SVM
backend achieved better performance than Euclidean distance,
showing the effectiveness of the discriminative model for speaker
modeling and scoring. Moreover, the combination of speaker
supervector and SVM achieved 4.5% relative gain in EER compared
with the i-vector/PLDA cascade, validating it to be an effective
method for text-dependent speaker verification.

Table 2. Performance comparisons among GMM–UBM,
i-vector/PLDA and the Euclidean and SVM scorings on speaker
supervector

EER(%) DCF08 DCF10 DCF12
GMM–UBM 2.445 0.010 0.363 0.296

i-vector/PLDA 1.737 0.086 0.396 0.287
speaker
supervector

Euclidean 1.893 0.098 0.380 0.293
SVM 1.627 0.073 0.246 0.191

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the speaker supervector to represent
the sequential speaker characteristics rendered in a speech utterance
for text-dependent speaker verification. To this end, the deep
neural network trained for speaker classification was used as
speaker feature extractor and dynamic time warping was used
to map the variable-length sequences to the same length. Our
experiments conducted in the Microsoft internal keyword spotting
dataset validated the superiorities of the sequential modeling on
speaker feature vectors over both the statistical mean on the speaker
vectors and the sequential modeling on acoustic feature vectors.
Moreover, using support vector machine for backend speaker
modeling and scoring on the speaker supervectors, we can obtain
better performance than the i-vector/PLDA cascade.

Besides the proposed speaker supervector, it’s still an interesting
topic to see how other successful models on acoustic feature can
be applied on the speaker feature vectors, such as GMM–UBM,
i-vector/PLDA and another sequential model GMM–HMM. This is
will be a point for future research.
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