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ABSTRACT 
 
In the studies of i-vector based speaker verification, the 
discriminative training of probabilistic linear discriminative 
analysis (PLDA) model has been proven to be an effective way to 
improve performance. This paper focuses on using a deep neural 
network (DNN) to strengthen the original discriminatively trained 
classifiers by its strong capability of nonlinear modeling 
representation. We first propose a deep neural network based 
dimensionality reduction model to replace the linear discriminant 
analysis (LDA) process, and then a discriminative training 
algorithm is also proposed to jointly optimize the network and 
PLDA scoring function under single discriminative criterion. Our 
experiments show that performance improvements are achieved in 
the male trials of short2-short3 core data set of NIST SRE08. 
 

Index Terms— DNN, Discriminative training, PLDA, 
Speaker verification 
 

1. INTRODUCTION 
 
Over the last decade, some methods based on i-vector extraction 
and PLDA have been widely used in state-of-the-art speaker 
verification systems [1, 2]. I-vector is an information-rich low-
dimensional fixed length vector extracted from the feature 
sequence representing a speech segment. A PLDA verification 
score between two i-vectors is then approximated by the Log-
Likelihood Ratio (LLR) between the “same-speaker” and 
“different-speaker” hypotheses. 

PLDA attempts to decompose speech data into a speaker 
component and a channel component, and assumes that they obey 
the Gauss distribution, thus the PLDA model can be optimized by 
generative training under the maximum likelihood (ML) criterion. 
However, such prior Gaussian assumptions have been proved 
inaccurate [1]. For this, some discriminatively trained affine 
transformations of the scores [3, 4] were firstly proposed to 
address the problem of inaccurate verification score, which is the 
result of the inaccurate assumptions. Subsequently, the 
discriminative training of PLDA model were shown to outperform 
the ML training in speaker verification [5-8]. Their proposed 
discriminative training scheme optimize the LLR score function of 
the PLDA model directly, instead of training the PLDA model 
explicitly. Those optimization processes allow the score function 
to be more general than the score function of a standard (ML 
trained) PLDA model. 

In state-of-the-art speaker verification systems, before the 
PLDA scoring stage, i-vectors are typically post-processed to 

generate dimensionality reduced and channel-compensated features, 
in order to annihilate the directions not informative for speaker and 
to improve the computational efficiency of PLDA. Nowadays LDA 
is widely used for this purpose. However, LDA is also limited by 
its Gaussian assumption. Especially when speech recordings are 
collected in the presence of noise and channel distortions, the 
inaccurate assumption can be more problematic [9, 10]. Some 
studies that attempt to alleviate the limitations of LDA have been 
reported to bring performance improvements [9, 11, 12].   

Despite the application of DNN are very successful in 
automatic speech recognition (ASR) field, a direct transition to 
speaker recognition is much more challenging, as speakers are 
often unknown during system training or each speaker only has 
very little training data. Recently, in DNN based speaker 
verification approaches, feature representation instead of classifier 
has become the main research focus. They can be roughly divided 
into two categories, one is to use the neural networks to assist in 
the i-vector extraction [13, 14], another is to directly learn 
embedding speaker feature [15-17]. 

In this paper, we propose a DNN based dimensionality 
reduction model to replace the LDA, and then optimize the DNN 
and the PLDA scoring function under single discriminative 
criterion by our proposed discriminative training algorithm. 
Consequently, the DNN can be directly embedded into the scoring 
function and be used to strengthen the original linear 
discriminatively trained classifiers by its strong capability of 
nonlinear modeling representation. Moreover, a more general 
classifier can be achieved by alleviating the limitations of Gaussian 
assumption in both dimensionality reduction and scoring stages. 
 

2. PROPOSED SPEAKER VERIFICATION SYSTEM 
 

The i-vector/PLDA approach has become state of the art in speaker 
verification field. Generally, it contains three processing stages: i-
vector extraction, dimensionality reduction and scoring. In this 
paper, our speaker verification system also follows this framework 
and a DNN based dimensionality reduction is introduced into the 
second stage. 
 
2.1. I-vector extraction [2] 
 
It is assumed that a high-dimensional GMM supervector v corresp-
onding to a speech utterance can be modeled as: 

v=u+Tx                                                (1) 

where x is a low-dimensional random feature vector known as the 
i-vector, T is a matrix of a low rank referred as the total variability 
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matrix, u is the mean of v. It is assumed that x follows a standard 
Gaussian distribution and its dimension is d. To learn the bases for 
the total variability subspace, Baum-Welch statistics are computed 
from a Universal Background Model (UBM). 
 
2.2. DNN based dimensionality reduction 
 
The i-vector approach models both signal (i.e. speaker) and noise 
（i.e. channel, session, etc.）variabilites in the same total variabil-
ity subspace, therefore an intersession compensation should be 
adopted to reduce dimensionality and to annihilate the undesired 
noisy directions. However, we do not use the widely adopted 
Fisher LDA compensation method in this stage. There are two 
reason for doing this. Firstly, the Fisher criterion based 
optimization which attempts to maximize the between-class scatter 
while minimizing the within-class variation is abandoned here, 
because we want to integrate the dimensionality reduction stage 
and the subsequent scoring stage to obtain a more discriminative 
classifier by using the discriminative training method presented in 
section 3. Secondly, nonlinear projection is also considered to have 
more powerful ability in seeking a reasonable low-dimensional 
feature subspace than the linear projection conducted by LDA.  

Our DNN based dimensionality reduction, shown as Fig.1, 
can be viewed as a nonlinear projection nd ℜℜ :f , which takes 
i-vector feature x as input, and the dimension n of output 
vector ( , )Θf x is much smaller than d, Θ is the set of network 
parameters. Rectified linear units (ReLUs) are adopted as 
activations in the hidden layers. Without the activation function, 
only linear summation is used in the output layer, hence negative 
value can be available in the output vector. Note that if there is 0 
hidden layer, the network will degenerate into a linear projection. 
The network parameters Θ will be jointly optimized with the 
PLDA model by our discriminative training method. Before the 
PLDA scoring stage, mean subtraction, length normalization and 
whitening are adopted as a pre-processing:  

2

( , )
( , )

f

f

Θ −
=

Θ −

f x μ
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f x μ
                               (2) 

 where M is the whitening transformation matrix and fμ is the 
mean of f(x).  
 
2.3. PLDA scoring 
 
Kenny [1] has given a modified PLDA model, it decomposes total 
variability into between-class (speaker) and within-class (channel) 
variability as follow: 

z=m+ U1 y1+ U2 y2                                                       (3) 

where y1 and y2 are random vectors depending, respectively, on the 
speaker and the channel. Speaker variability is given by U1 and 
channel variability is given by U2. In our case, m is a zero vector 
after the pre-processing. 

For scoring two vectors zi and zj, an LLR sij should be 
calculated between the hypothesis of being from the same speaker 
and the hypothesis of being from the different speakers.  A closed-
form expression of the LLR was also given by [8]  

( )T T T T T
ij i j j i i i j j i js k= + + + + + +z Pz z Pz z Qz z Qz z z c        (4) 

 
Fig.1 Architecture of the DNN used in dimensionality reduction 

where 
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where 1 1
T

bΣ = U U , 2 2
T

wΣ = U U  are between- and within-class 
covariance matrices, respectively. tot b wΣ = Σ +Σ  . Equation (4) can 
also be written as a dot product of a vector of weights WT, and an 
expanded vector  ( , )i jφ z z  representing a trail:  
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In the above linear expression, vec(.) stacks the columns of a 
matrix into a vector. 
 

3. DNN BASED DISCRIMINATIVE TRAINING 
 

Instead of using the ML criterion for training the PLDA model, 
some discriminative training methods [5-8] have been proposed to 
directly optimize the parameters W for discriminating between the 
same-speaker trial and a different-speaker trial. One of those 
methods is Support Vector Machine (SVM) based discriminative 
training [6], which refers to maximize the margin separating the 
scores of same-speaker trails and different-speaker trials. In this 
study, we follow the approach since it is computationally 
inexpensive on training and extremely fast on testing, and then 
modify it to jointly optimize W and Θ.  
 
3.1. Objective function 
 
The set of training examples comprises both same-speaker and 
different-speaker trials. Let { }1, 1ijt ∈ − be the corresponding labels. 
We consider the training of our discriminatively trained classifier 
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as a nested optimization problem, its objective function can be 
written as  

min ( )E
Θ

Θ                                              (6) 

where 
2

2
,

1( ) min max(0,1 ( ( ) ( )))
2

T
ij i j

i j
E tλΘ = + − Θ Θ∑W

W W φ z z  (7) 

Equation (7) denotes the original SVM based discriminative 
training which is to obtain an optimal W for a given network 
parameter set Θ. Equation (6) is to select an optimal Θ based on 
the margins and the hinge losses of the SVMs. Given Θ, let 

 ˆ arg min ( )E= Θ
W

W                                        

and  
2

2 ,

1ˆ ˆ ˆ( ) max(0,1 ( ( ), ( )))
2

T
ij i j

i j
E tλΘ = + − Θ Θ∑W W φ z z       

According to the Theorem 4.1 in [18], since φ and its 
derivatives are smoothly varying functions of Θ, and Ŵ  is unique, 
E(Θ) can be proven differentiable and have derivatives given by  

ˆ( ) ( )E E∂ Θ ∂ Θ
=

∂Θ ∂Θ
                                    

Hence, our optimization problem can be solved by a gradient 
algorithm, and then Ŵ  must be calculated for the current Θ in 
each gradient step.  
 
3.2. Optimization of PLDA model 
 
Even though the Equation (7) is a standard SVM problem, we 
address the optimization by its gradient instead of any SVM 
optimization package, since there are hundreds of thousands of 
pairs of i-vectors in our training dataset.  According to Cumani’s 
work [6], the gradient can be calculated as: 
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where ijg is the derivative of the loss function with respect to the 
dot product 

0 ( , ) 1T
ij i j

ij
ij

if t
g

t otherwise

 ≥= 
−

W φ z z                    (9) 

 
3.3. Optimization of DNN parameters 
 
As we know, mini-batch stochastic gradient descent (SGD) 
techniques have almost been the standard algorithm for training 
DNNs. Thus, considering the embedded DNN in our approach, it 
is natural to design a SGD based algorithm to implement the 

optimization of Equation (6). For each mini-batch B, based on 
Equation (4), the gradient can be estimated as: 

,
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Obviously, two dot product terms inside the summation formula of 
Equation (10) can be separately calculated by Back Propagation 
(BP) algorithms. Note that those trials whose ijg is equal to 0 do 
not participate in the gradient calculation, and therefore will not 
appear in the mini-batches. Adam algorithm [19] is employed here 
to update Θ. All the samples are shuffled in each epoch, and Early 
Stopping technique is used to judge convergence via a validation 
set. Our algorithm is listed below. W is initialized with a 
generatively trained PLDA. Θ is initialized as Θ0 

  2
0 2

arg min ( , )i i
iΘ

Θ = Θ −∑ f x a                       (11) 

where ai is the output of a standard Fisher LDA approach. 
 
Algorithm 1      SGD Based training Algorithm 
Input:  Training set, penalty factor λ of the SVM 
Output: the optimal parameters Θ̂ and its corresponding Ŵ  
1：Initialize Θ by a SGD algorithm based on Eq. (11) 
2：Initialize W by the EM algorithm of PLDA 
3:   for each epoch  
4        Estimate whitening matrix and calculate zi by Eq.(2) 
5:       Calculate  the LLR sij by Eq.(5) and gij by Eq.(9) 
6:     Filter out all the trials with gij=0 
7:     Run a Batch Gradient Descent algorithm based on 

Eq.(8) to Obtain Ŵ  (up to the maximum number of 
iterations or convergence) 

8：     Shuffle and fill the mini-batches 
9:       for each mini-batch B 
10:            Calculate the gradient of the DNN using BP algorithm  

based on  Eq. (10)  
11:            Update Θ using Adam algorithm 
12:     end for 
13:     if  maximum epoch number is arrived or Early Stopping 

condition is met then stop 
14:  end for 

 
4. EXPERIMENTS 

 
4.1. Experiment setup 
 
The performance of our DNN based discriminatively trained 
classifier is evaluated on the NIST SRE08 male short2-short3 core 
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data set. The common evaluation conditions (C1-C8) which 
respectively refer to microphone or telephone speech under 
channel matched or mismatched conditions are all covered in our 
evaluation experiments to test the generalization ability of our 
method. They contain 39433 trails from 1270 male speakers in 
total. We make use of the data from NIST SRE03-06 evaluation 
datasets as the development set. Both equal error rate (EER) and 
minimum detection cost function (DCF) are used for evaluation. 

In the frame-level acoustic feature extraction, the speech is 
segmented by a 25ms hamming window shifting with 10ms frame 
rate. The passing frequency band is restricted to 300-3400 Hz. 19 
Mel frequency cepstral coefficients (MFCC) with log energy are 
calculated with their first and second derivatives to form a 60-
dimension feature. A full-covariance gender-independent UBM 
with 2,048 mixtures is trained and then the total variability 
subspace for i-vector extractor is estimated from the development 
set by using the Kaldi toolkit [20]. The dimension of i-vector is set 
to 600 in our experiments. 

Baseline LDA and generatively trained PLDA models are 
trained on the male utterances of the development set, which 
include 10389 utterances for 1268 speakers. For training our DNN 
based discriminatively trained classifier, 300,000 different-speaker 
trails and 10,000 same-speaker trails are randomly selected from 
the above dataset as training data. Another 5000 trails are also 
randomly selected as validation set that consists of 4500 different-
speaker trails and 500 same-speaker trails. The DNN includes 256 
ReLUs in each hidden layer. The dimension of its inputs is 600, 
and the dimension of its outputs is set to 50. 

The penalty factor λ of the SVM is set to 100. The size of 
mini-batches and the maximum number of epochs are separately 
set to 100 and 10000. For the Adam algorithm, the default setting 
given by paper [19] is adopted. 
 
4.1. Results 
 
Table 1 compares the obtained results from 4 i-vector speaker ver-
ification systems. The system denotes as LDA+GTPLDA, which 
serves as our baseline, is based on a LDA based dimensionality 
reduction and a generatively trained PLDA model.  The baseline 
system is compared with three discriminatively trained systems. 
The system denotes as LDA+DTPLDA is based on a LDA based 
dimensionality reduction and a discriminatively trained PLDA 
model, which is obtained by running only the step 7 in Algorithm 1. 
For consistency, the LDA transformation reduces i-vector dimen-
sionality to 50, and before the PLDA training and scoring stage, 
mean subtraction, length normalization and whitening are also 
adopted just as Equation (2) in the two systems above.  

 The system denotes as DNN+GTPLDA is based on a DNN 
based dimensionality reduction and a generatively trained PLDA 
model, which can be obtained by replacing the step 7 with a 
standard generative training algorithm of PLDA in Algorithm 1.  

The system denotes as DNN+DTPLDA is based on a DNN 
based dimensionality reduction and a discriminatively trained 
PLDA model, which can be obtained by Algorithm 1. A DNN with 
3 hidden layers is employed in the last two systems. 

The results show that, compared with the baseline system, the 
LDA+DTPLDA system does bring a little bit performance 
improvements, as what have been reported in the previous studies. 
Even though the adopted PLDA model is generatively trained, the  

Tabel 1. Performance of 4 i-vector speaker verification systems 

Method EER(%) miniDCF 
LDA+GTPLDA 8.52 0.041 
LDA+DTPLDA 8.41 0.040 
DNN+GTPLDA 8.26 0.037 
DNN+DTPLDA 7.76 0.034 

 

Tabel 2. Performance of the systems with different hidden layers 

Method EER(%) miniDCF 
DNN+DTPLDA 
( 0 hidden layer) 8.33 0.039 
DNN+DTPLDA 
( 1 hidden layer) 8.17 0.036 
DNN+DTPLDA 
( 2 hidden layers) 7.78 0.034 
DNN+DTPLDA 
( 3 hidden layer) 7.76 0.034 

 

performance of the DNN+GTPLDA system is still better than the 
baseline, since the DNN embedded PLDA scoring function is 
indeed iteratively adjusted under the discriminative criterion. The 
best performance is achieved by the DNN+DTPLDA system, it 
proves that our proposed DNN based discriminative training 
method is effective.  

In the next set of experiments, we investigated the impact of 
the number of hidden layers of the DNN on speaker verification 
performance. Table 2 shows speaker verification results of the 
DNN+DTPLDA systems using 0-3 hidden layers respectively on 
the same evaluation dataset with Table 1. Two observations can be 
made from this table. First, the larger the number of hidden layers, 
the better the performance. Second the performance of the system 
with 0 hidden layer is better than the LDA+DTPLDA system, 
although both of them adopt linear projection on dimensionality 
reduction. This shows that it is meaningful to integrate the 
dimensionality reduction process into the scoring stage. 

 
5. CONCLUSION AND FUTURE WORK 

 
We have presented a DNN based discriminative training method 
for i-vector and PLDA based speaker verification. It follows the 
idea of traditional discriminative training of PLDA and provides an 
effective way on embedding a DNN into the discriminatively 
trained PLDA scoring function.  On NIST SRE evaluation data set, 
the resulting systems perform better. In the future, the effect of 
deeper networks and other forms of networks will be investigated. 
End to end systems that follow the strategy of this article will also 
be considered.  
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