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ABSTRACT

End-to-end systems using deep neural networks have been
widely studied in the field of speaker verification. Raw audio
signal processing has also been widely studied in the fields of
automatic music tagging and speech recognition. However, as
far as we know, end-to-end systems using raw audio signals
have not been explored in speaker verification. In this paper, a
complete end-to-end speaker verification system is proposed,
which inputs raw audio signals and outputs the verification
results. A pre-processing layer and the embedded speaker
feature extraction models were mainly investigated. The pro-
posed pre-emphasis layer was combined with a strided convo-
lution layer for pre-processing at the first two hidden layers.
In addition, speaker feature extraction models using convolu-
tional layer and long short-term memory are proposed to be
embedded in the proposed end-to-end system.

Index Terms— speaker verification, end-to-end system,
raw audio signal

1. INTRODUCTION

Conventional speaker verification systems are normally com-
posed of the following four stages: pre-processing, acous-
tic feature extraction, speaker feature extraction, and binary
classification. With recent advances in deep neural networks
(DNNs), many researchers used DNN to replace individual
processes of speaker verification [1, 2]. d-vector, and b-vector
schemes were proposed to cover speaker feature extraction
and binary classification, respectively [3, 4]. End-to-end sys-
tems were also proposed which cover from acoustic feature
extraction to binary classification [5, 6, 7, 8].

However, although raw audio signals have been studied in
other tasks, such as automatic music tagging [9] and speech
recognition [10], a successful speaker verification system us-
ing raw audio signal itself has not yet been proposed. Unlike
other domains, such as image and text, raw audio signals are
difficult to use because they have highly fluctuating values,
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ranging from -32,768 to 32,767 in widely used 16 bit audio
samples.

In this paper, an end-to-end speaker verification system
that directly uses raw audio signals is proposed. The proposed
system includes specially designed convolutional hidden lay-
ers that embed pre-processing into the DNN. An utterance-
level speaker feature extraction model that conducts acous-
tic and speaker feature extractions is also proposed and em-
bedded in the proposed end-to-end system. The proposed
pre-processing layer, speaker feature extraction layers, and
b-vector system together compose the proposed end-to-end
system.

The remainder of this paper is organized as follows. Sec-
tion 2 presents prior works related to our study. In Section 3,
the embedding of raw audio signal processing is addressed,
and Section 4 describes two DNN-based models for speaker
feature extraction. The proposed complete end-to-end sys-
tems are presented in Section 5, and Section 6 delivers the
experimental settings and the result analysis. Lastly, the pa-
per is concluded in Section 7.

2. RELATED WORKS

The current study is influenced by two main fields of studies:
end-to-end systems in speaker verification and raw audio sig-
nal processing in speech recognition and music auto-tagging
task. In speaker verification, many studies have been con-
ducted on end-to-end system using acoustic features such as
mel-frequency cepstral coefficients, mel-filterbank energies,
or spectrograms [8, 6, 11]. Bengio et al. and Heo et al. [6]
used mel-filterbank energies as input features and extracted
a speaker feature by using long short-term memory (LSTM)
layers. Casper et al. [11] exploited spectrograms as input and
used recurrent neural networks. For the back-end classifiers,
cosine similarity scoring (CSS), and b-vector were embedded
into the end-to-end systems. Our prior work concerning the
end-to-end system, which is the most relevant to this paper,
uses mel-filterbank energies as input, multilayer perceptrion
(MLP) as a speaker feature extractor, and b-vector as a classi-
fier [6].

Systems that use raw audio signals exist in other tasks
such as music auto-tagging and speech recognition. In music
auto-tagging, there was a study on end-to-end systems using
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Fig. 1. Illustration of the proposed pre-processing layers and speaker-feature-extraction models.

raw audio signals [9]. In [9], the concept of ‘strided convo-
lution’ was proposed to process raw audio signals at the first
hidden layer, which is also used in this paper. In speech recog-
nition, the work of Palaz et al. [10] is one of the most works
relevant to ours. It also uses an end-to-end system based on
raw audio signals and exploits convolutional layers. The pro-
posed final end-to-end systems of this paper differs with their
works [10] mainly in three aspects:

1. Specially designed pre-processing layers improve
the performance

2. Convolutional layers and LSTM layers are sequentially
used, each with different objectives.

3. B-vectors are composed of the speaker model and
test utterance before classification.

3. RAW AUDIO SIGNAL PROCESSING

The processing of raw audio signals by using DNN is diffi-
cult mainly because of the fluctuating scales in these signals.
In this study, the proposed pre-emphasis layer, depicted in
Figure 1, was used to solve the scale problem of raw audio
signals.

Pre-emphasis is a widely used pre-processing technique
for audio signals [12]. It was originally used to emphasize
high frequency signals. In addition, it stabilizes the scale
of raw audio signals. Therefore, we embedded pre-emphasis
into the proposed systems by designing a pre-emphasis layer.
Pre-emphasis is represented as p(t) = s(t)−α·s(t−1), where
s(t) refers to the input signal value at time t and α refers to
the pre-emphasis coefficient, normally 0.97, and p(t) refers to
the pre-emphasized signal.

The pre-emphasis layer is designed using a convolutional

layer, and has a kernel of length 2, in which two weights are
initialized as -0.97 and 1. This layer is placed at the very first
hidden layer and is fine-tuned along with other hidden layers.
Note that the pre-emphasis layer should be fine-tuned using a
relatively lower learning rate than that used for other layers to
prevent its weights from changing too rapidly.

After the pre-emphasis layer, a strided convolution layer
was added, as in [9, 10, 13]. The strided convolution layer
is also a specially designed hidden layer for processing raw
audio signals; here, the stride size is the same as or half of
the length of the kernel. Synnaeve at el. [13] used this layer
with the kernel length set to approximately 25 ms (1 frame)
and a stride size of half of the kernel length. Palaz et al. [10]
shortened the kernel length to 10 ms. Lee et al. [9], compared
various strided convolutions, and selected the strided convo-
lution with both kernel length and stride size of 3. Similarly,
in this study, the strided convolution with both kernel length
and stride size of 3 at the second hidden layer was used.

4. SPEAKER FEATURE EXTRACTION

This section presents the two proposed speaker feature ex-
traction models: the raw audio convolutional neural network
(RACNN) model and RACNN model with LSTM (RACNN-
LSTM). Each model inputs raw audio signals propagated
through the pre-processing layers, and is embedded in the
final end-to-end system. These two proposed models are
depicted in Figure 1, where the small and wide boxes respec-
tively refer to RACNN and RACNN-LSTM.

4.1. Raw audio CNN model

The raw audio CNN model (RACNN) comprises convolu-
tional hidden layers, pooling layers, and fully connected
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hidden layers, and simultaneously conducts acoustic and
speaker feature extractions. The number of kernels in the
convolutional layers increases as the network goes deeper. A
max pooling layer is attached after each convolutional layer
to reduce the output length of each layer. In this process,
speech signals become an utterance-level speaker feature.
Compared to the conventional d-vector systems that conduct
element-wise averaging on frame-level features to compose
an utterance-level feature, the proposed CNN model inher-
ently models utterance-level features without averaging. In
the RACNN model, speaker representation features are ex-
tracted from the fully connected layers that follow the last
convolutional layer.

4.2. Raw audio CNN-LSTM model

The RACNN-LSTM model is an extension of the RACNN
model. As described earlier, the RACNN model effectively
extracts the utterance-level speaker features from raw audio.
Additionally, the output of the pooling layer in the RACNN
model can be interpreted as two-dimensional data (i.e. ut-
terance feature map), which the LSTM can utilize as input.
LSTM is a special type of recurrent layer, which can model
sequential data [14, 15]. To extract speaker features more ef-
fectively, the LSTM layer is added next to the selected pool-
ing layer.

The RACNN-LSTM model comprises two parts: utterance-
feature map extraction using convolutional layers and LSTM
modeling. An utterance feature map refers to the output of the
selected pooling layer of the RACNN model, where the length
of the input is reduced using pooling layers for LSTM mod-
eling. An utterance feature map has two-dimensional data
where the length and number of the kernels are interpreted
as timesteps and dimensions, respectively. The utterance fea-
ture map is then transformed into a vector through LSTM
modeling. Linear activations of the fully connected layer,
following the LSTM layer, is used as the speaker feature in
the RACNN-LSTM model.

When training the proposed RACNN-LSTM model, the
joint-optimization approach in [6] was applied by fine-tuning
with the losses from two output layers, one from the RACNN
and the other from the RACNN-LSTM. The hidden layers af-
ter the selected pooling layer in RACNN are only used for
joint training the RACNN-LSTM model and not for extract-
ing the speaker features. These layers are not removed be-
cause the joint optimization was determined to enhance the
training convergence speed and improve the speaker verifica-
tion performance, as reported in [6].

5. CLASSIFIER IN THE END-TO-END SYSTEMS

The b-vector classifier [4] was used as the classifier embed-
ded in our final end-to-end system. In the b-vector classifier,
operations, such as element-wise summation, subtraction, and

Fig. 2. Illustration of the overall process of the proposed
end-to-end systems with embedded pre-processing layers and
speaker feature extraction layers.

multiplication, are applied to the speaker model and test utter-
ance, each in a form of a vector, to compose a b-vector for a
given trial. The relationship between the speaker model and
test vector is derived through these element-wise operations.
The b-vector is then input to a binary classifier MLP to con-
duct the verification process.

In the final end-to-end system proposed in this study, the
b-vector network was attached to the trained RACNN-LSTM
model and the whole network was fine-tuned. The overall
proposed end-to-end system is depicted in Figure 2. Identical
with the training process of the RACNN-LSTM, the end-to-
end system was trained by jointly optimizing the three output
layers, one each from RACNN, RACNN-LSTM, and speaker
verification result. After the training, convolutional and fully
connected layers in the latter part of the RACNN model were
removed because these layers are not necessary for speaker
verification process. In the evaluation phase, the utterances
which compose the speaker model and one test utterance are
input to the end-to-end system and the verification result is
directly seen at the output layer.

6. EXPERIMENTS AND RESULTS

6.1. Dataset

The evaluation is conducted using part 1 short utterances of
RSR 2015 [16]. RSR 2015 comprises 300 speakers, includ-
ing both genders, and there are 270 utterances of average 3.2
s (9 sessions × 30 different phrases) for each speaker. Ut-
terances from 100 males and 94 females were used as the
development set and the rest was utilized as the evaluation
set following [17]. The trial composition in this paper fol-
lows RSR 2015’s guideline where three utterances from the
same speaker with identical phrase is used for composing the
speaker model. The trials where the identities of both speaker
and phrase are identical was considered as client trial. Cross-
gender trials were excluded in examining the performance.

6.2. Experimental configurations

The baseline d-vector system uses mel-filterbank energies as
input and is composed of a seven-layer MLP, where each hid-
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den layer has 1024 nodes. The length of the input layers of the
raw audio systems, i.e., RACNN, RACNN-LSTM, and end-
to-end systems was set to 59,049(=310). All the convolutional
layers, except the pre-emphasis and strided convolutional lay-
ers, comprise kernels of length 3 and stride 1. Each fully
connected layer, except the baseline d-vector system, has 512
nodes. One pre-emphasis layer with one kernel of length 2
and one strided convolutional layer with 128 kernels of length
and stride of 3 were placed immediately after the input layer
in all the systems, except the baseline d-vector model. After
every convolutional layer, a max pooling of 3 was applied to
decrease the input length by one-thirds.

The RACNN comprises nine convolutional layers, each
with a pooling layer, and two fully connected layers. In the
RACNN, the linear activations of the first fully connected
layer are used as the speaker features. One LSTM layer and
two fully connected layers were attached to the RACNN to
compose the RACNN-LSTM model. The LSTM was at-
tached to the output of the 5th pooling layer, where the input
length of an utterance is decreased from 59, 049 to 81(= 34).
The linear activations of the first fully connected layer were
used as speaker features in the RACNN-LSTM. In the end-
to-end systems, the b-vectors were calculated by applying
element-wise summation, subtraction, and multiplication be-
tween a speaker model and a test utterance. The b-vector
networks comprise input layer of 1,536 nodes (512 × 3) and
five fully connected layers, each with 1024 nodes, and one
output layer with two nodes. Dropout [18], and batch nor-
malization [19] were used in all systems inputting raw audio
signals.

6.3. Result analysis

The effectiveness of the proposed pre-emphasis layer was
evaluated first, the results of which are shown in Table
1. By applying the pre-emphasis layer, a relatively 24%
lower EER was measured. All systems in Table 2 comprise
a pre-emphasis layer, except the baseline model that uses
mel-filterbank energies as input. The two weights of the
pre-emphasis layer initialized to -0,97 and 1 (widely used
pre-emphasis coefficients) were fine-tuned to -0.83 and 1.12,
respectively. The effectiveness of the strided convolution
layer at the second hidden layer has already been experi-
mented in [9]. Therefore, no further evaluation regarding
strided convolution layer was made in this study, and the
strided convolution layer with kernel length and stride of 3
was used.

Next, the speaker feature extractors were evaluated, and
the results are described in Table 2. Our baseline system,
with d-vector as the speaker feature extractor and CSS as
the back-end classifier, showed EER of 4.89%, which is con-
sistent with the results in [17]. The EER of RACNN with
CSS was worse than the baseline. In contrast, the RACNN-
LSTM model performed better, implying that relying entirely

on convolutional layers to extract speaker features from raw
audio signals is less appropriate. This is supported by the fact
that the RACNN-LSTM model, which divided the speaker-
feature-extraction process into two steps, showed lower EER.
The two steps in RACNN-LSTM model refer to the convo-
lutional layers extracting appropriate feature format for the
LSTM layer and the LSTM layer modeling sequential data
provided by convolutional layers.

In both RACNN and RACNN-LSTM models, CSS was
replaced with the b-vector system, and the network was ex-
tended to the end-to-end systems. Both systems showed more
than the relative 10% improved performance. However, the
dynamic changes in the classifier described in [17] were not
shown.

Table 1. Comparison of the effectiveness of the proposed pre-
emphasis layer.

Model EER (%)
RACNN (CSS) 7.61

RACNN + pre-emphasis layer (CSS) 5.22

Table 2. Performance evaluation of the proposed systems.
Input feature Model EER (%)

mel-filterbank d-vector (CSS) 4.89energies (baseline)
RACNN (CSS) 5.22

Raw audio RACNN (e2e) 3.94
signal RACNN-LSTM (CSS) 3.82

RACNN-LSTM (e2e) 3.63

7. CONCLUSIONS

This paper described a novel complete end-to-end speaker
verification system that inputs raw audio signals and outputs
verification results. This study was concentrated on the pre-
processing of raw audio signals by using embedded layers
and the extraction of speaker features from raw audio signals.
To facilitate raw audio signal processing by using DNN, spe-
cially designed layers were suggested. The proposed speaker
feature extraction model is a natural utterance-level system, in
which raw audio signals are directly mapped to the utterance-
level speaker features by using convolutional and LSTM lay-
ers. Therefore, the proposed models facilitated in avoiding
the necessity to change frame-level features into utterance-
level features. Our future work will include the embedding of
various classifiers into the raw audio end-to-end systems.
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