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ABSTRACT

In this paper, we are interested in exploring Deep Neural Network
(DNN) based speaker embedding for Random-digit task using con-
tent information. To this end, a technique is applied to automati-
cally select common phonetic units between the enrollment and test
data to produce speaker verification scores. Furthermore, a novel
approach is proposed to incorporate content information in the DNN
directly. It is hypothesized that features extracted using this DNN
will be helpful for the task. Experiments on the RSR dataset show
that the proposed method outperforms the baseline i-vector system
by 43% relative equal error rate.

Index Terms— speaker verification, speaker embedding, i-
vectors, content mismatch

1. INTRODUCTION

In the last decade, the i-vector approach has shown to be a dom-
inant technique for text-independent Speaker Verification (SV). It
assumes that the speaker variabilities lie in a fixed-dimensional sub-
space [1]. A back-end classifier, such as Probabilistic Linear Dis-
criminant Analysis (PLDA) is applied on the i-vectors for produc-
ing SV scores. This approach provides good performance for text-
dependent scenario as well [2].

Text-dependent SV is usually implemented using fixed pass-
phrases. In this paper, we are interested in Random-digit based text-
dependent task which puts less constraints on the speaker. In this
scenario, the speaker pronounces a permutation of ten digits during
enrollment while the test data consists of five digit string. This sce-
nario is assumed to be robust to replay attack [3].

In literature, various techniques employing i-vector and Joint
Factor Analysis (JFA) have been explored for the Random-digit [4,
5]. In [4], parameters of the i-vector model are estimated with the
content information of the speech signal. Finally, PLDA model is
trained with the content specific vectors. A significant gain in per-
formance is reported as compared to the baseline system. In [6],
the JFA model is trained on the segmented digit strings. Finally, the
SV scores are obtained by the linear combination of the individual
digits.

In another direction, modelling speakers with a speaker discrim-
inative Deep Neural Network (DNN) has shown good performance
for SV [7, 8]. Motivated by the success of DNNs in the context of
speaker, speech [9, 10] and image recognition tasks, we explore the
application of DNNs for the Random-digit task. We believe that the

DNN based speaker embedding features can be useful for represent-
ing the invariant speaker characteristics.

In [8], a DNN was trained to predict speaker labels for an in-
put speech frame. During evaluation, the activations of the last hid-
den layer are accumulated over an utterance to obtain speaker repre-
sentation, referred to as d-Vector. A PLDA is trained as the classi-
fier to provide SV scores. Evaluation on proprietary text-dependent
data-set indicates that this technique achieves competitive results as
the state-of-the-art SV system. An approach to utterance embed-
ding employing triplet-loss has been successfully applied for SV [11,
12]. This approach is considered as one of the baseline systems in
this paper. Triplet-loss involves minimizing the Euclidean distance
between same-speaker and maximizing the distance for different-
speaker embedding simultaneously. An advantage of this network
is that during evaluation, it can be used to obtain speaker similarity
directly without training a PLDA separately. However, a limitation
of the d-Vector and triplet-loss based approaches is that they ignore
the content-information of the speech signal completely. Many stud-
ies have shown that exploiting the phonetic variability can signifi-
cantly enhance the performance of SV systems [5, 4, 13, 14, 15].
Motivated by these results, we incorporated this information on top
of DNN based speaker embedding (from the d-Vector and triplet-
loss network) for the Random-digit task using content-matching [5].
Content-matching refers to the process of selecting common set of
phonetic units between enrollment and test utterance for obtaining
speaker similarities. In [5], online i-vectors (i.e. i-vectors estimated
for every frame of speech) were used as used as features for perform-
ing content-matching. However, a large training corpora (such as
Fisher and Switchboard datasets) was required to obtain the reported
performance. In this paper, we focus only on the RSR training data
for system development. We explore the application of DNN in this
scenario to obtain speaker discriminative features. Furthermore, we
propose to extract speaker-phonetic features by incorporating con-
tent information in the DNN framework of d-Vector and triplet-loss.
Experiments are performed on the RSR digit evaluation set. The ob-
tained results significantly outperform the baseline system by 43%
relative in Equal Error Rate (EER).

The paper is organized as follows. Section 2 describes the base-
line DNN based speaker embedding approaches considered in this
paper, while Section 3 describes the content matching and the pro-
posed technique. Sections 4 and 5 present the experimental setup
for evaluating the system and discuss the achieved results by various
systems. Finally, the paper is concluded in Section 6.
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Fig. 1: The neural network architecture of triplet-loss approach for
text-dependent SV.

2. BASELINE SYSTEMS

Modelling speakers with DNN based speaker-discriminative loss has
shown to be beneficial for SV [8, 12]. In this paper, we consider two
such successful approaches employing DNN based speaker embed-
ding, namely, (i) d-Vector, and (ii) triplet-loss.

2.1. d-Vector

This approach was first proposed for phrase based text-dependent
SV [8]. It trains a DNN that predicts a speaker label with an input
speech frame (with context of frames appended to it). The hidden
layers of the DNN employ ReLU activation function. The d-Vector
representation for an utterance is obtained by averaging the output
of the last hidden layer.

2.2. Triplet-loss

Triplet-loss network has been successfully used for speaker diariza-
tion and speaker recognition [12, 11, 16, 17]. During training, three
utterances, referred to as triplet, τ = (Xa, Xp, Xn) are fed as input.
The utterances are referred to as the anchor, positive and negative ex-
amples such that (Xa, Xp) belong to the same speaker while (Xa,
Xn) are from different speakers. Thus, the loss function (L) of the
network involving the triplet, also known as triplet-loss, aims at min-
imizing the distance between the embeddings of the anchor and pos-
itive, while maximizing the distance between anchor and negative,
as given by the following equation:

L(Xa,Xp,Xn) = ‖f(Xa)−f(Xp)‖22−‖f(Xa)−f(Xn)‖22, (1)

where ‖.‖22 is the Euclidean norm and f is the embedding of an ut-
terance produced by the neural network. The network is trained with
such triplets τ , so that the triplet-loss (L) is positive. Triplet mining
is an important aspect of this approach.

We now describe the architecture of triplet-loss network (as il-
lustrated in Figure 1), which was first proposed in [11] for speaker
speaker diarization. We found that the performance of SV system
is better on using this architecture compared to a similar network
in [7]. The first layer consists of either a bi-directional Long Short
Term Memory (bi-LSTM) or fully connected (FC) with ReLU ac-
tivation function to produce speaker embedding per frame [11, 7].
The bi-LSTM layer takes a single frame whereas the FC layer re-
quires a context of speech frames as input [7]. The second layer
called Average Pooling, accumulates the activations from last layer
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Fig. 2: Multi-task learning for Random-digit task.

to produce one vector corresponding to an utterance [18, 11]. The
subsequent layers consist of FC layers (only one layer is used in our
experiments). Finally, length normalization is applied to constrain
the output in a fixed dimensional hyper-sphere.

3. CONTENT MATCHING AND SPEAKER-PHONETIC
EMBEDDING

The d-Vector and triplet-loss approaches do not use content infor-
mation for scoring. However, we believe that exploiting this infor-
mation in addition to speaker embedding would help improve SV. In
this regard, we apply content matching for the Random-digit task [5].
Content-matching aims to transform the content of the enrollment
data to match the test utterance. Speaker embedding for each frame
of an utterance is obtained from the d-Vector and triplet-loss (outputs
are collected before the Average Pooling layer of Figure 1) networks
for performing content-matching. In [2, 5], i-vector-PLDA features
that were trained to discriminate speaker and content were shown
to be useful for text-dependent SV. Similarly, we also present an
approach to incorporate phonetic information in these networks in
order to obtain features that contain both speaker and content infor-
mation.

3.1. Content matching

It has been shown that exploiting content information can signifi-
cantly improve the performance of text-dependent SV [5]. In par-
ticular, the knowledge of phonetic units co-occurring between en-
rollment and test data has shown to improve the i-vector system.
Content-matching is employed on the speaker embedding per frame
(with the d-Vector and triplet-loss network). Similarity scores be-
tween enrollment and test data is given by the following equation:

s(He,Ht) =
1

C

∑
j

minid(he,i,ht,j), (2)

where He = {he,1, he,2, · · · , he,i, · · · , he,R} and Ht= {ht,1,
ht,2, · · · , ht,j , · · · , ht,C} represent set of speaker embeddings per
frame for the enrollment and test data, d(he,i, ht,j) computes the
distance between the speaker embeddings he,i and ht,j . The score
s(He,Ht) represents the accumulated distance between the closest
phone units. It is to be noted that this function s(He,Ht) is differ-
ent from Dynamic Time Warping in that it does not force locality
constraints [19]. A PLDA model is applied to compute the distance
(d(he,i, ht,j)) between two speaker embeddings. The details of con-
tent matching can be found in [5]. In the next section, approaches to
train DNN with phonetic information have been explored.
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3.2. Incorporating content information

It has been shown in literature that multi-task learning improves per-
formance for a variety of tasks, like image, speech, speaker recogni-
tion [20, 21, 22]. We hypothesize that training the DNN with content
information (i.e. extracting speaker-phonetic features from DNN)
would be helpful for the Random-digit task. For the d-Vector frame-
work, phonetic information is incorporated by multi-task learning as
shown in Figure 2. Multi-task learning involves the joint optimiza-
tion of the speaker and phonetic loss. After training, the activations
from the last hidden layer of Figure 2 are used to represent speaker-
phonetic features for performing content matching.

For triplet loss network, phonetic information is applied by using
first order statistics of hidden activations instead of Average Pooling
layer (Figure 1). These statistics have been used successfully to
train a Siamese network [23]. First order statistics summarize the
contribution of speakers per phone. The first order statistics (mc) of
an utterance X = {x1,x2, · · · ,xM} is computed as follows:

mc =
∑
i

f(xi)1(xi ∈ c),

where 1(xi ∈ c) is an indicator function that outputs one if ith frame
is assigned to cth phonetic unit. To obtain the first order statistics,
a state-of-the-art automatic speech recognizer is applied to align the
development data with mono-phone units. The modified triplet loss
function minimizes the embedding of anchor, positive and negative
utterances based on the first order statistics, mc (similar to the loss
function in [23]). The loss function is fully differentiable and the gra-
dients can be estimated efficiently with back propagation algorithm.
Once the network has been trained, the outputs after the first layer
(bi-LSTM or FC) of Figure 1 are used to perform content matching.

4. EXPERIMENTAL SETUP

In this section, experimental setup of the baseline and the proposed
systems are described.

4.1. Evaluation and Training Data

We performed experiments on Part 3 portion of the RSR2015
dataset [3, 24, 25], restricting to female speakers only, which is
a Random-digit task. This part comprises 49 speakers uttering ran-
dom sequence of digits. The enrollment data consists of an user
pronouncing ten digits while the test utterance consists of 5 digits.
The average duration of the enrollment and test data is 9 s while
the test is 3 s respectively. The total number of target trials being
5’283 and 253’584 impostor trials. We used 61K utterances from
development and background part of Part 1 to 3 consisting of speech
segments spoken by 94 speakers.

4.2. i-vector system

The front-end SV system extracts Mel Frequency Cepstral Coeffi-
cients (MFCC) of 20 dimensions from 25 ms frame of speech signal
with 10 ms sliding window with the delta and double delta features
appended to it. Short time gaussianization is applied to the features
using a 3 s sliding window [26]. We trained a 512 mixture Univer-
sal Background Model (UBM) on the training data and 200 dimen-
sional i-vector extractor is trained subsequently. Finally, a PLDA is
trained as part of the standard recipe of text-independent system with
speaker labels of training data [27, 28].

Table 1: Performance of the various baseline systems in terms of
EER(%) on RSR2015 Random-digit task. The i-vector system per-
forms better than the DNN based speaker embedding systems. ED
refers to Euclidean distance.

Systems Loss Architecture Classifier EER (%)
i-vector - - PLDA 11.8
d-Vector CE FC PLDA 12.3
Multi-task CE FC PLDA 12.7
Triplet Triplet-loss bi-LSTM+FC PLDA 15.2
Triplet Triplet-loss bi-LSTM+FC ED 23.2
Triplet Triplet-loss FC+FC PLDA 17.3
Triplet Triplet-loss FC+FC ED 25.2

4.3. Speaker embedding using the d-Vector and triplet loss net-
work

For the d-Vector, we trained a single layer FC based system with the
training data of RSR2015. We used only 940 utterances as the cross-
validation data from the 94 speakers. We obtained 100% accuracy
on the training and development data using the Cross Entropy (CE)
loss function.

For the triplet network, we use offline sampling approach [29].
At any epoch, we generate triplets (Xa, Xp, Xn) such that the pho-
netic content of these utterances (Xa, Xp, Xn) has maximal over-
lap. The rationale of choosing this approach is to select difficult
negative instances. This leads to creating a total of 200K triplets per
epochs. We randomly choose a subset of these triplets to train the
triplet loss network. A learning rate of 0.001 was used throughout
the experiments. A 1K dimensional hidden layer is used in all the
experiments. Pytorch was used for performing the experiments [30].
The performances of various systems are reported in terms of EER.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we describe the results obtained with the baseline and
the proposed system. We evaluated the performance of the following
systems on the Random digit task:

• i-vector: This is the conventional i-vector system using Gaus-
sian Mixture Model (GMM).

• d-Vector: A FC hidden layer as used as the network archi-
tecture for obtaining d-Vectors. Section 2.1 describes the
conventional technique to apply d-Vectors. The baseline d-
Vector system employs a PLDA model for scoring. The con-
tent matching algorithm uses speaker embedding per frame to
produce similarity scores.

• Triplet: This approach optimizes the triplet-loss function on
three utterances. The conventional approach to using triplet-
loss network is described in Section 2.2. This technique uses
a bi-LSTM (or a FC) and a FC layer. This network can be ap-
plied to compute end-to-end scores (shown as the Euclidean
distance in Table 1). Speaker representation of an utterance
is obtained by collecting the activations after the Average
Pooling layer (See Figure 1). Furthermore, a PLDA model
is trained on these representations. The content matching
algorithm is applied on the output obtained before Average
Pooling layer of Figure 1. The proposed triplet-loss network
applying first order statistics (as described in Section 3.2) is
referred by Triplet-Stats.
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Table 2: Performance of the systems using content matching on
RSR2015 Random-digit task in terms of EER(%). The baseline i-
vector system provides an EER of 11.8%.

Systems Architecture EER

d-Vector FC 9.7
Triplet FC + FC 9.4
Triplet bi-LSTM + FC 6.7

Neural Networks trained with phonetic information

Multi-task FC 7.7
Triplet-Stats bi-LSTM + FC 13.4

• Multi-task: This is the multi-task learning framework in-
volving minimizing the speaker and phonetic loss (using the
d-Vector approach) as described in Section 3.2. We used only
one hidden FC layer with ReLU activation function. For the
baseline system employing multi-task learning, hidden acti-
vations from last layer are averaged to obtain speaker rep-
resentation. A PLDA is further trained on these representa-
tions. For content matching, hidden activations per frame are
applied for obtaining SV scores.

5.1. Baseline SV systems

Table 1 shows the performance of i-vector and DNN speaker embed-
ding based SV systems. The performance of the i-vector system is
comparable to the results published in literature [5]. From Table 1,
we observe that the simple d-Vector approach performs better than
the triplet loss network. Furthermore, we observe that multi-task
training provides worse performance than the d-Vector. Thus, ef-
fects of averaging of hidden activation are worse in multi-task than
d-Vectors. Performance of the d-Vector approach is worse than the
baseline i-vector PLDA system.

For the triplet based network, we observe that the performance
is worse compared to that of the baseline i-vector and the d-Vector
approaches. It is to be noted that Triplet system provides an EER of
23.2% using Euclidean distance or end-to-end loss only (PLDA was
not applied in this system). An explanation of the poor performance
of the Triplet approach is that it requires large speaker population to
provide results comparable to i-vector system [7, 23].

5.2. Proposed approach

Table 2 shows the results of the content matching using speaker
embeddings from the different networks. The results indicate that
performance of the systems (d-Vector and Triplet) dramatically in-
crease, when content matching is applied. It highlights the impor-
tance of using common phones for obtaining speaker similarities.
Furthermore, we observe that the triplet loss network employing
bi-LSTM and FC layers performs significantly better the other ap-
proaches using content matching. It outperforms the baseline i-
vector system by 43% relative EER (11.8% to 6.7% absolute).

Integrating phonetic information in the DNN has shown to pro-
vide promising results. In particular, the multi-task training in the
d-Vector significantly outperforms the speaker-loss by 20% relative
EER (9.7% to 7.7% absolute). This system outperforms the base-
line i-vector system by 34% relative EER (11.8% to 7.7% absolute).

However, performance of triplet-loss network using content infor-
mation degrades significantly . A reason of this could be that the
phonetic information is fully deterministic and can not be optimized
by the neural network.

6. CONCLUSIONS

In this paper, various approaches to apply DNN based speaker em-
bedding features for Random-digit task were explored using content
information. In this regard, we considered two DNN approaches to
speaker verification, namely (i) d-Vector, and (ii) triplet-loss. We ap-
plied content matching to produce speaker similarities by selecting
common phonetic units between the enrollment and the test data. We
also proposed an approach to incorporate content information in the
DNN by multi-task learning and computing the first order statistics.
We observed that the estimating speaker embedding from the triplet-
network performs the best and outperforms the baseline i-vector sys-
tem by 43% relative EER. Furthermore, speaker embedding features
obtained from multi-task trained network performed better than the
d-Vector.
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