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ABSTRACT

Recognizing the identities of multiple talkers via their overlapped
speech is a challenging task, it is also one main difficulty for the
“cocktail party problem”. In this paper, a novel dilated convolu-
tional neural network with a focal KL-divergence loss function is
proposed to tackle this problem. During training, relative loss for the
well-classified samples is automatically reduced and consequently
more attention is paid to the hard samples. The use of the focal KL-
divergence loss function leads to more stable training and improved
testing performance. Furthermore, a post processing of assigning
different frames with different weights is also adopted and leads to
further improvement. The proposed framework can be easily ex-
tended from 2-talker to 3-talker speaker identification scenario. Ex-
periments on the artificially generated RSR2015 multi-talker mixed
corpus show that the proposed approach can improve multi-talker
speaker identification significantly.

Index Terms— co-channel speaker identification, convolutional
neural networks, focal loss, dilated convolution.

1. INTRODUCTION

Co-channel speaker identification (co-channel SID) aims to recog-
nize the identities of multiple talkers when they speak simultane-
ously, it is one main challenge of the “Cocktail Party Problem” [1, 2].
Although the state-of-the-art speaker identification (SID) systems
can achieve impressive accuracy in the single-talker scenario, pro-
cessing highly overlapped speech is still a very challenging task in
the speaker recognition research area.

Before deep learning era, Gaussian Mixture Model (GMM)
based approaches were usually adopted. In [3], authors proposed to
treat co-channel SID and speech separation as an iterative process,
adapted GMM and KL-Divergence (KLD) scores were fused to
further improve the performance. In [4], the most probable speaker
is firstly selected and paired with other possible speakers and the
combined models are used for co-channel SID.
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Motivated by the success of Deep learning for related tasks, e.g.
speech recognition [5, 6, 7], Deep Neural Networks (DNN) were
also tried for speaker recognition. DNN-based speaker recognition
systems, such as d-vector [8], j-vector [9, 10] and end-to-end frame-
works [11, 12, 13, 14] were proposed in recent years. However, there
are few studies utilizing deep learning in the co-channel SID task. In
[15], authors treated the co-channel SID as a multi-class classifica-
tion problem and utilize DNN as the classifier. A basic DNN model
can achieve nearly 100.0% accuracy on the simple SSC dataset, a
similar improvement can also be observed on the artificially gener-
ated SRE overlapped speech [15], which is harder.

Convolutional Neural Network(CNN) is well-known for its in-
credible capability of learning structured features and it is widely
used in many fields such as image recognition [16] and speech recog-
nition [17]. In this paper, CNN is utilized in our system, showing
the superiority over DNN on the co-channel SID problem. To en-
large the reception field, dilated convolution is adopted. Moreover,
we propose an enhanced version of KL-Divergence, which is named
Focal-KLD for model optimization: the loss for simple samples is
reduced and that for those hard samples is increased. This new loss
function stablizes the training process and achieves a better perfor-
mance. Finally, post filtering is applied to get an additional gain.
Experiments were carried out on the relatively simple speech sepa-
ration challenge (SSC) corpus as well as the harder artificially gener-
ated RSR multi-talker mixed corpus. Significant improvements are
observed by the proposed approaches.

The rest of this paper is organized as follows, Section 2 briefly
reviews the DNN based co-channel SID system, and Section 3 de-
scribes the proposed focal kl-divergence based dilated convolution
neural network system. Section 4 introduces the experimental se-
tups and results comparison, and Section 5 concludes this paper.

2. DNN BASED CO-CHANNEL SID

Since co-channel SID is a really challenging task, existing methods
only consider the close-set scenario, in which all speakers in the in-
ference phase are known to the training set. Under this condition, in
[15, 18], co-channel SID is formulated as a multi-class (class num-
ber is known) classification problem and DNN is employed as the
classifier. The flow chart is shown in Figure 1. Given artificially
generated multi-talker mixed frame-level features as the input, soft
training labels, representing the probabilities of underlying speak-
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ers to generate the current frame, are used as the targets. The sum
of the probabilities of target speakers equals one, whereas the other
speakers have zero probabilities. Soft labels are computed using the
frame-level energy ratio, more details can be found in [15, 18]. In the
evaluation phase, frame-level scores are aggregated at the utterance
level. Given a test utterance O consisting of T frames o1,o1 · · ·oT ,
the utterance-level probability for speaker s will be computed as,

J (s) = 1

T

T∑
t=1

P (s|ot) (1)

where P (s|ot) represents the probability of frame ot comes from
speaker s. The predicted speaker identities are obtained by selecting
the top k speakers with the largest probabilities.

Fig. 1. Co-channel SID system using deep models

3. FOCAL KL-DIVERGENCE BASED DILATED
CONVOLUTIONAL NEURAL NETWORK

Following the framework depicted in Figure 1, we improve the sys-
tem from three aspects. First, instead of DNN, CNN is adopted as
the learning machine, it’s more capable of learning structured fea-
tures. Moreover, we adopt dilated convolution in the first several
layers in our proposed system for multi-talker SID, allowing a better
leverage of the context information. Second, an enhanced version
of KL-Divergence (Focal-KLD) is proposed to substitute the normal
KLD loss. Finally, a post filtering operation is performed instead of
simple averaging in the frame score aggregation phase.

3.1. Dilated Convolution

A dilated convolution is a convolution where the filter is applied over
an area larger than its length by skipping input values with a step
[19, 20], thus allowing the network to operate on a coarser scale
than a normal convolution and supports an exponential expansion
on the receptive field. A dilated convolution can be regarded as a
normal convolution with a larger filter size, where some entries are
neglected in the computation. Figure 2 gives an example of 2-dilated
convolution with a 3× 3 filter.

Fig. 2. Convolution using a 3× 3 filter with dilation of 2.

3.2. Focal Kullback-Leibler Divergence Loss

3.2.1. Kullback-Leibler Divergence Loss

Different from the objective function used in d-vector paradigm
in single-talker recognition task, as a multi-class classification
task, Kullback-Leibler Divergence(KLD), which measures the dis-
tance between two probability distributions, is usually used as the
loss function in neural network optimization. For instance, KL-
Divergence is added as a regularization to the adaption criterion
in [21]. Recently, transfer learning with teacher-student training
has received more and more attention [22, 23, 24, 25], which also
uses the KL-Divergence as objective function. The frame-wise
KL-Divergence is defined as

KLD(θ;o,y) =

D∑
i=1

pref(yi|o) log
pref(yi|o)
pθ(yi|o)

(2)

where pθ(yi|o) is the posterior for observation o computed by the
trained model parametrized with θ, pref(yi|o) is the reference target
soft label. D is the dimension of y, representing the number of
speakers. It should be noted that cross-entropy is adopted as the loss
function in the previous work [18], which is actually equivalent to
KLD in this setting. Equation 2 can be re-written as

KLD(θ;o,y) = CE(θ;o,y) + const (3)

CE(θ;o,y) = −
D∑
i=1

pref(yi|o) log pθ(yi|o) (4)

const =
D∑
i=1

pref(yi|o) log pref(yi|o) (5)

Since the second part of Equation 3 is constant given the training
set, it’s equivalent to optimize either loss function. Because cross
entropy is used in the single-class classification, KLD is adopted
here to eliminate ambiguity.

3.2.2. Focal Kullback-Leibler Divergence Loss

Focal loss was first proposed in [26], it adds a weighting factor (1−
P (ytarget|o)γ) to the standard KLD criterion. Setting γ > 0 reduces
the relative loss for well-classified samples (simple samples), and
increases more focus on the harder and misclassified ones. In this
work, we designed the focal version of normal KLD and applied it in
for multi-talker SID. It is further referred to as Focal KLD (FKLD).

FKLD(θ;o,y) = w · KLD(θ;o,y) (6)

w = (1 + α−
∑

i|Pref(yi|o)!=0

Pθ(yi|o)γ) (7)
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where α and γ are two hyper-parameters, controlling the decaying
extent of the loss. These two parameters can be fixed through the
training process, or be changed according to the specific training
condition (e.g. changing by the training epochs), and details will be
discussed in Section 4.4.

3.3. Post Filtering

The simplest way to perform frame score aggregation during the in-
ference is to average the frame-level probabilities, shown in Equa-
tion 1. Although this method is simple and effective, it treats all
frames equally. We propose to assign different frames with individ-
ual weights to boost the performance, which is named post filtering.
Equation 1 is changed to

J (s) = 1

T

T∑
t=1

(wt)
β · p(s|ot) (8)

where wt = maxs∈S p(s|ot), representing the largest probability
of this frame, and β is an adjustable hyper-parameter. As shown
in Equation 8, for each frame-level probability vector, the weight it
earns is larger when it’s more likely generated by a single speaker.
We can think that it gives more confidence on the non-overlapped
speech segments and less confidence on the overlapped ones.

4. EXPERIMENTS

4.1. System Description

4.1.1. Data Preparing and Evaluation Metric

In this paper, in addition to the standard SSC corpus[27], an ar-
tificially generated multi-talker SID corpus based on RSR2015 is
utilized, including two- and three-talker mixed speech scenarios
(called RSR-2mix and RSR-3mix, respectively). Taking the two-
talker speech as an example, given the clean utterances in the original
corpus, the utterance-pairs are randomly chosen and the shorter ut-
terance is padded to match the length of the longer one. The selected
utterances are then mixed with the equal energy ratio, i.e. 0dB SNR.
Figure 3 illustrates an exemplary spectrogram of the original clean
single talker speech and the mixed two-talker speech. Due to the
large overlapped area in the mixed speech, the co-channel mixed
speech is much challenging for SID than the single-talker speech.
The three-talker mixed speech data is generated following similar
procedure, with the equal energy ratio within three speakers.

40-dimensional Fbank is used as features in all experiments,
large chunks of silence are removed using an energy-based VAD,
after which Cepstral Mean Subtraction (CMS) is performed.

Prediction accuracy is used as the evaluation metric. A test
case is only correct when all potential speakers are correctly pre-
dicted.

4.1.2. Baseline DNN System

As the previous work in [18], DNN with normal KLD is employed
as the baseline system. It contains 4 hidden layers, each consists of
512 nodes. ReLU is used as the activation function, and the model
initialization follows the settings in [28]. SGD is used as the opti-
mization method with the momentum set as 0.9.

(a) First speaker clean speech (b) Second speaker clean speech

(c) Two-talker mixed speech under 0dB SNR condition

Fig. 3. Spectrogram comparison of single-talker clean speech
and two-talker mixed speech in RSR-2mix dataset

4.1.3. Proposed Dilated CNN system

To make the model scale comparable, the CNN used in this work
contains 3 convolution layers with 1 fully-connected layer. No pool-
ing layer is involved. Different paddings (on both sides) are chosen
to make the feature map size unchanged. Table 1 gives the detailed
configuration, the size of the output layer corresponds to number of
speakers of the dataset(34 for SSC, 50 for RSR dataset).

Table 1. Dilated CNN Configuration
Input 40 × 11 Feature Map (11-frame context)

Conv Layers filter size padding dilation channels
1 5×5 2 1 2
2 3×3 1 1 4
3 3×3 2 2 6

FC Layer 512 nodes
Output 34 nodes (SSC) 50 nodes (RSR)

4.2. Validation Experiments on SSC Corpus

The Speech Separation Challenge (SSC) Corpus[27] contains 17000
training utterances from 34 speakers. Each training utterance is gen-
erated following a fixed pattern: command, color, preposition, letter,
number and adverb. Test utterances are mixed single-channel speech
generated from the same 34 speakers, but using different utterances
from the training set. Though the test set comprises six TIRs from -9
dB to 6 dB, we only performed on the 0dB case in our experiments,
which contains 600 test cases. The results in Table 2 show that our
baseline system (using DNN with KLD) achieves 100.0% accuracy
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in the 2-talker case, which is comparable to (even better than) the
previous published result on this task. Considering that the accuracy
on SSC has been nearly perfect, we will change to another harder
corpus to better evaluate the proposed approaches.

Table 2. Accuracy (%) comparison on SSC Dataset
Systems 2 talkers

DNN+KLD in [15] 99.8
DNN+KLD in our work 100

4.3. Experiments on multi-talker RSR 2015 Corpus

4.3.1. Multi-talker dataset design

Since the SSC task is too simple to get useful conclusions, we car-
ried out more experiments on the artificially generated multi-talker
RSR corpus. The original RSR2015 corpus is not designed for co-
channel speaker identification task, so we artificially generated a
multi-talker corpus based on the RSR 2015 part 1. 50 speakers
(25 males and 25 females) are randomly selected. In the 2-talker
experiments, there can be 1225 (50*49/2) speaker pairs. For each
speaker pair, we randomly select one utterance from each speaker
and generate one co-channel utterance. Total 20 co-channel utter-
ances are generated for each speaker pair, resulting in 24500 train-
ing utterances. We follow the same procedure to generate the eval-
uation utterances, 4 co-channel utterances for each speaker pair, re-
sulting in 4900 test cases. For the 3-talker scenario, there are 19600
(50*49*48/6) speaker triplets. For each speaker triplet, we generate
3 co-channel utterances, leading to 58800 training utterances. Fol-
lowing the same procedure, 10000 testing utterances are randomly
generated. It should be noted that all the utterances used for gener-
ating test cases are not included in the training set.

4.3.2. Dilated CNN with focal KL-Divergence

The convergence curves of the baseline KLD-DNN and the proposed
FKLD-based Dilated CNN are shown in Figure 4. It is observed that
the proposed FKLD-based dilated CNN converges faster and better
than the baseline. The accuracy on the validation set achieves 68.5%
after the first training epoch for the dilated CNN system, while only
37.3% is obtained for the DNN.

Table 3 shows the recognition results of the baseline DNN sys-
tem and the systems using the proposed approaches. Focal refers
to deep models trained with the enhanced Focal-KLD loss, and PF
means using the post filtering processing in the evaluation phase (de-
scribed in Section 3.3). As shown as Table 3, the proposed dilated
CNN structure outperforms the baseline DNN in both 2-talker and
3-talker scenarios. By replacing the normal KL-Divergence loss to
the proposed focal KL-Divergence can improve the accuracy consis-
tently on both conditions. The accuracy for 2- and 3-talker condi-
tions are increased from 87.16% and 47.79% to 91.31% and 55.74%
respectively by the dilated CNN structure with focal KLD.

As described in Section 3.2, a weighting function termed as post
filtering can be adopted in the frame-level score aggregation phase,
resulting in another significant improvement. The accuracies are fur-
ther increased to 92.47% and 55.83% for the 2- and 3-talker condi-
tions respectively.

Fig. 4. Convergence curve comparison of the baseline KLD-
DNN and the proposed FKLD-Dilated CNN on the generated
RSR-2mix dataset

Table 3. Accuracy (%) comparison on multi-talker RSR
Dataset

Models Focal PF 2 talkers 3 talkers

DNN
× × 87.16 47.79
X × 88.59 51.91
X X 89.24 52.51

CNN
× × 88.65 50.86
X × 91.31 55.74
X X 92.47 55.83

4.4. The hyper-parameter setting

There are several hyper parameters in the proposed approach, in-
cluding α, γ in Equation 4 and β in Equation 5. α is suggested to
be set between 0.0 and 0.5, forbidding the decay factor to be either
too small or too large, and γ can be a fixed value or a changed one.
Different from the γ usage with fixed to 2.0 in the previous work for
image recognition [26] actually we increase γ gradually in this work,
i.e. paying more and more attentions on the hard samples during the
training process. To be more specific, in the 2-talker experiments, α
is set to 0.3 and γ is set to (#epoch/10), and in the 3-talker experi-
ments, α is set to 0.5 and γ is set to (#epoch/10). β in Equation 8
is set to 2.0 and 1.0 for the 2- and 3-talker conditions respectively.

5. CONCLUSION

We proposed a dilated CNN-based framework to tackle the chal-
lenging Co-channel multi-talker SID problem. Experiments were
carried out on both standard SSC and artificially generated multi-
talker RSR corpus. Compared to the previous work using DNN,
the proposed dilated CNN works well on encoding the speech fea-
tures in the co-channel condition and shows better performance.
Moreover, we proposed a new Focal Kullback-Leibler Divergence
(FKLD) loss function for the model optimization, which reduces
loss on the well-classified (simple) samples and pays more attention
on the mis-classified (hard) samples. This new loss function can get
a significant improvement compared to the normal KLD. Finally a
post filtering operation is performed during the inference phase to
further refine the system performance.
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