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ABSTRACT

In this paper we introduce a speaker verification system de-
ployed on mobile devices that can be used to personalise a
keyword spotter. We describe a baseline DNN system that
maps an utterance to a speaker embedding, which is used to
measure speaker differences via cosine similarity. We then
introduce an architectural modification which uses an LSTM
system where the parameters are optimised via a curriculum
learning procedure to reduce the detection error and improve
its generalisability across various conditions. Experiments
on our internal datasets show that the proposed approach
outperforms the DNN baseline system and yields a relative
EER reduction of 30–70% on both text-dependent and text-
independent tasks under a variety of acoustic conditions.

Index Terms— Speaker Verification, Deep Learning,
LSTM, Curriculum Learning

1. INTRODUCTION

Speaker verification aims to confirm the identity of a speaker
by matching some representation of an incoming test phrase
to that of a set of speaker-dependent enrolment phrases. At
Apple, we are interested in personalising the Hey Siri detector
by verifying the speaker’s voice before triggering Siri; with-
out this, the always-on detector described in [1] would re-
spond whenever anyone in the vicinity says the trigger phrase
(or even something else that sounds similar). To reduce the in-
convenience of such false triggers, this feature introduces an
optional enrolment session, during which the user says five
phrases, each of which begin with ‘Hey Siri.’ Enrolment re-
duces not only the probability that ‘Hey Siri’ spoken by an-
other person will trigger the user’s iPhone, but also the rate at
which similar-sounding phrases might trigger Siri.

In the last three years, we have seen approaches to speaker
verification shift from i-vectors and PLDA [2, 3, 4] to obtain-
ing speaker representations using DNNs, LSTMs, and CNNs.
In particular, Heigold et al. [5] proposed an end-to-end
text-dependent speaker verification system that derives a ‘d-
vector’ from a DNN and an LSTM. Subsequently, Zhang et
al. [6] applied an attention mechanism to a text-dependent
end-to-end system by jointly optimising a deep CNN and

an attention model learned from a phonetic representation.
On the text-independent front, Snyder et al. [7] introduced
an end-to-end system using a DNN architecture that maps
a variable-length speech segment to a fixed-dimensional
speaker embedding. Finally, another recent study proposed
a deeper end-to-end architecture (>20M parameters) using a
residual CNN and gated recurrent units that worked for both
text-dependent and text-independent tasks [8].

Except for the last study mentioned, most investigations
into speaker representations focus on either text-dependent or
text-independent scenarios individually. At Apple, however,
our data is more integrated. The ‘Hey Siri’ requests we see
come in one of two forms: (a) just the ‘Hey Siri’ trigger; or (b)
the trigger followed by the payload request (e.g., ‘Hey Siri,
how’s the weather today?’). Given the extra speech, it seems
reasonable to expect a more reliable speaker representation
from (b). To the best of our knowledge, no study has looked
at extending a text-dependent speaker representation towards
a more text-independent (or less-constrained text) scenario.
Furthermore, given the computational constraints of battery-
powered devices, our ultimate goal is to deploy a single dis-
criminative transform that can perform speaker verification on
both text-dependent and text-independent tasks.

In this paper, we first present our baseline, text-dependent
model for speaker verification that uses a DNN to extract
speaker-specific information from a supervector-based repre-
sentation of the trigger phrase. We then propose an LSTM
model together with two learning strategies aimed at improv-
ing generalisation: curriculum learning [9] and multi-style
training. While multi-style training is a commonly used tech-
nique in speaker recognition [10], curriculum learning has
never been applied in the field, even though it has been used
successfully for image classification [11], automatic speech
recognition [12], and handwriting text recognition [13]. We
show that the proposed modifications yield a system that can
halve the equal error rate achieved by the baseline system and
handle utterances containing less-constrained text. The re-
mainder of the paper is organised as follows. Section 2 de-
scribes the baseline DNN system and outlines the LSTM sys-
tem. Curriculum learning and multi-style training strategies
are discussed in Section 3. Section 4 introduces the datasets
and elaborates on the results before we conclude in Section 5.
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Fig. 1: Overview of the PHS system. Note that the frame buffer
contains the acoustic features, and the HMM scorer is only part of
the actual detector [1] which for the sake of clarity is not entirely
depicted here.

2. SYSTEM OVERVIEW

Figure 1 shows a high-level diagram of the personalised Hey
Siri system (PHS). We first extract 26 MFCCs using a win-
dow size of 25 ms at a rate of 100 frames per second. Then,
we derive a speaker supervector from the Hey Siri detector
by concatenating state segment means from the output of the
dynamic programming accumulator of the HMM scorer [1],
resulting in 442-dimensional vector. Note that the dynamic
programming accumulator has 28 states, however the first 10
states model silence and the eleventh state models the start
of the /h/, so we choose not to use them in our supervec-
tor. A specially-trained DNN transforms the supervector into
a ‘speaker space’ where, by design, patterns from the same
speaker tend to be close, whereas patterns from various speak-
ers tend to be further apart. The speaker verification (SV)
score is computed in the ‘speaker space’ where the cosine
similarities to the reference patterns created during enrolment
are averaged as follows:

SVscore(ua, spk) =
1

N

N∑
i=1

fnn(ua)>fnn(uspki )

‖fnn(ua)‖‖fnn(uspki )‖
(1)

where ua is the input vector we want to test, uspki is the
ith enrolment reference vector for speaker spk, N is the total
number of enrolments, and fnn is the speaker discriminative
transform. The score is then compared with a threshold to
decide whether the sound that triggered the detector is likely
to be ‘Hey Siri’ spoken by the enrolled user.

2.1. Speaker Discriminative Transform
For a speaker discriminative transform we first consider a
fully-connected multilayer neural network with sigmoid non-
linearities, followed by a fully-connected linear layer, and a
softmax layer [14] with K units, where K is the number of
speakers in the transform training set (cf. Section 4). Given
a labelled training sample (u, y) ∈ X where X is the train-
ing set, u is a input vector, and y is the target speaker index,

we train the model to minimise the negative log-likelihood
(cross-entropy) of the softmax distribution: `((u, y); Θ) =

− log
[
ezj/

∑K
k=1 e

zk
]
, where Θ are the neural network pa-

rameters, j is the target speaker, z are the unnormalised log
probabilities predicted by the linear transformation comprised
in the softmax layer: zj = w>j h + bj , where wj and bj are
the weights and bias, and h is the vector of activations of the
last hidden layer. In the evaluation phase, the softmax layer is
removed and the output of the linear layer is used as a speaker
embedding.

2.1.1. DNN Baseline

The DNN baseline speaker discriminative transform con-
sists of four fully-connected sigmoidal layers followed by a
128-unit linear layer and a softmax layer with 18k units.
Batch normalisation is applied at every layer except the
last. The parameters were initialised from a uniform dis-
tribution, and the optimisation is performed via stochas-
tic gradient descent. The gradient of the cost function L
is computed with respect to some parameter θ ∈ Θ, with
L(Θ) =

∑M
m=1 `((um, ym); Θ), where M is set to 256 and

represents the number of training samples randomly selected
in a mini-batch. The training is initialised at a learning rate of
1e−4 with a momentum of 0.9 and a weight decay of 1e−4
at the end of each epoch, where one epoch is considered to
be a full sweep on the training set. We monitor the training
convergence on a cross-validation set and halve the learning
rate as appropriate. The described DNN system serves as a
baseline reference to our previous on-device configuration.
Note that the DNN system supports text-dependent task only
and some of the system parameters (e.g., the HMM scorer,
and the 26 MFCCs) are DNN-specific. Including more details
on the optimisation of the DNN model is beyond the scope
of this paper; instead, we focus on the more flexible LSTM
system that demonstrates significant improvements and is
flexible enough to handle less-contrained text.

2.1.2. LSTM System

The LSTM system replaces the four fully-connected sig-
moidal layers of the DNN baseline with a single recurrent
layer containing 512 LSTM units. While vanilla LSTMs [15]
have multiple outputs at each timestep, we only connect the
last LSTM output hM (where M is the length of the input
sequence u) to the fully-connected linear layer in order to
obtain a single, utterance-level speaker representation. The
input to the LSTM is simply the sequence of MFCC frames
(20 MFCCs per frame, 25ms data window, 100 frames per
second). Note that the LSTM system did not perform sig-
nificantly better with 26 MFCCs input; thus, we only report
results with 20 MFCCs input. For stochastic optimisation,
we use Adam [16] with an initial learning rate of 1e−3 and
a mini-batch size of 128. We also perform 8-bit quantisation
on the network parameters for every system evaluated in this
paper.
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3. IMPROVING GENERALISATION

To improve the generalisation of the speaker discriminative
transform, we adopt and combine both multi-style training
and curriculum learning. Both strategies help increase ro-
bustness under various acoustic conditions, and the latter is
especially instrumental in teaching the model to handle dif-
ferent textual content. To help explain the details of these two
paradigms, we first define the following training subsets Xk

where k ∈ {hs,hs+pl,pl,all} as follows:

• Xhs contains samples only with the global keyword
(e.g., ‘Hey Siri’);

• Xhs+pl consists of samples with a first part containing
the keyword followed by a payload part with variable
text (e.g., ‘Hey Siri, what time is it?’);

• Xpl consists of samples only containing the payload
(e.g., ‘what time is it?’);

• Xall = {Xhs ∪Xhs+pl ∪Xpl}.

Finally, to distinguish between audio recordings in their orig-
inal form and those we artificially create by adding noise
and/or convolving with various room impulse responses (as
described in Section 4), we denote the latter using the super-
script sim (e.g., Xsim

all).
In multi-style training (MST), we train with an aug-

mented data set that contains both the original and artificially
created versions of the training set; i.e., {Xk ∪ Xsim

k }. The
same principle applies to improving generalisation to obtain
a text-independent system where the various subsets are all
merged together to create training set Xall.

The curriculum learning (CL) paradigm formalises a
general principle of learning simpler concepts first before
gradually learning more complex ones. This adheres to our
desire to build a text-independent speaker verification system
by learning first a text-dependent task that uses a known, fixed
phrase and then learning to handle a more complex task that
contains less-constrained text content. In particular, the net-
work starts by learning a discriminative transform on a text-
dependent task from samples containing only the keyword
(Xhs). The complexity of the task is then increased slightly
by introducing samples that contain a payload in addition to
the original trigger (Xhs+pl), and so on. This paradigm can
be similarly applied to learn from various acoustic scenarios
by training first on clean data and then running an additional
learning step on the augmented data (i.e., CL0 in Table 1).

Table 1 presents curricula of varying complexities that we
consider in this paper. The first three – VAN, MST0, and CL0
– demonstrate the impact of both multi-style training and cur-
riculum learning on a system that focuses solely on the ‘Hey
Siri’ trigger. The next one – MST1 – is a naive baseline, of
sorts, in which all the data of all types is fed into the model
at once. Finally, the last two – CL1 and CL2 – outline the
effects of curriculum learning as a way to generalise towards

Curriculum Learning Steps
VAN Xhs

MST0 {Xhs ∪Xsim
hs }

CL0 Xhs → {Xhs ∪Xsim
hs }

MST1 {Xall ∪Xsim
all}

CL1 Xhs → Xhs+pl → Xpl → Xall

CL2 Xhs → Xhs+pl → Xpl → Xall → {Xall ∪Xsim
all}

Table 1: Different curricula types. Datasets are either merged (∪), or
used at sequential training steps (→). VAN denotes ‘vanilla’ data in
its original form; and as discussed in Section 3, MST and CL stand
for ‘multi-style training’ and ‘curriculum learning’, respectively.

#utterances #speakers #utt/spk (m̃)
Train (X·) 2.5M 18k >20 (118)
Train (Xsim

· ) 1.5M 18k >20 (118)

iP-van enrol 2.5k 500 >4 (5)
test 53k 500 >40 (106)

FF enrol 490 98 >4 (5)
test 11k 102 >20 (118)

iP-sim enrol 1.3k 250 >4 (5)
test 19.5k 245 >1 (70)

Table 2: Statistics for the training sets (X·, and X sim
· ), and for the

evaluation sets with details on the utterances used to ‘enrol’ and
‘test’ our models. m̃ is the median of the number of utterances per
speaker.

the ability to handle text-independent tasks. Note that a learn-
ing step consists of a full sweep on the training set and that the
first CL stage is always performed on Xhs until convergence
on a cross-validation sets.

We did investigate a fairly exhaustive set of curriculum
learning step permutations, including starting with either
Xhs+pl or Xpl and introducing Xsim

k at an earlier stage.
However, CL1 and CL2 not only gave the best results, but
they also consistently converged fastest during training. It
seems as though learning on the shorter utterances in Xhs

can really help jumpstart the model’s ability to discriminate
between speakers. More experiments are required to substan-
tiate these findings but are beyond the scope of this paper –
we look forward to investigating this in future work.

4. DATASETS AND EXPERIMENTS

Statistics about the data used for training and evaluation are
shown on Table 2. In general, we want to demonstrate robust
performance on the following two evaluation sets:

• Vanilla iPhone (iP-van) data, consisting of ‘Hey Siri’
requests sent to our servers from production iPhones;

• Far-field (FF) data, consisting of ‘Hey Siri’ requests
from various distances (6ft, 9ft, 12ft, 15ft) recorded in
various rooms of 10 different houses.

However, while our original training material (‘Train (X·)’ in
Table 2) resembles that of iP-van, it is a significant mismatch
from the FF data. To help compensate for this mismatch, we
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EER [%]
#params iP-van FF iP-sim

1 DNN (VAN) 0.4M 3.99 11.80 5.26
2 LSTM (VAN) 1.2M 3.10 3.52 5.01
3 DNN (MST0) 0.4M 4.20 5.00 4.52
4 LSTM (MST0) 1.2M 3.07 3.43 3.52
5 LSTM (CL0) 1.2M 2.97 3.21 3.52

Table 3: Performance comparison across different architectures and
training strategies on text-dependent test sets.

also create a simulated training set (‘Train (Xsim
· )’ in Table

2) that is artificially generated from the original ‘Train (X·)’
data by convolving a subset of the utterances with one of 500
different room impulse responses and, optionally, adding one
of two car noise types at various SNR levels. In light of this,
we also provide results on a comparable evaluation set:
• Simulated iPhone (iP-sim) data, which we artificially

generate from the iP-van evaluation data.

4.1. Text-dependent: ‘Hey Siri’
We first present results obtained by training and evaluating
only on fixed-text data and then elaborate on the results ob-
tained using less-constrained text material. Results are re-
ported in terms of equal error rate (EER) with t-norm score
normalisation [17]. Comparing results between Rows 1 and
2 of Table 3 show that the LSTM system achieves a lower
detection error than the DNN baseline on all three evaluation
sets leading to 23%, 71%, and 5% relative EER reduction on
iP-van, FF, and iP-sim datasets, respectively. Applying MST0
yields a dramatic gain on the FF data for the DNN (Rows 1
and 3), while the LSTM sees significant EER improvements
only on the simulated evaluation data (Rows 2 and 4). Lastly,
we see a slight improvement on the iP-van and FF sets using
CL0 instead of just MST0 for LSTM training (Rows 4 and 5).
Although it did not further improve the iP-sim result, it does
seem to support the conjecture that curriculum learning can
help improve robustness under various acoustic conditions.

4.2. Text-independent: ‘Hey Siri, what time is it?’
Figure 2 reports results obtained at different curriculum learn-
ing stages. For clarity, we only report results obtained with
the LSTM, as it consistently outperforms the DNN system.
The left-most element on the horizontal axis (VAN) denotes
a vanilla system trained using just the fixed-text data. Given
that the network has never seen any hs+pl data in training, it
is not surprising that its result on the less-constrained hs+pl
data is significantly worse than on the fixed-text hs data. CL1
denotes a model that went through the four learning steps as
indicated in Table 1. We can see that it is able to achieve a
much lower EER on both the hs+pl and hs evaluations. In
fact, we observe a relative reduction of 54% on iP-van and
70% on FF, obtaining a speaker transform that is able to ex-
tract relevant speaker representations also from the entire ut-
terance including the payload. Additionally, it confirms that if

Fig. 2: Performance comparison across different stages of the cur-
riculum learning procedure for the LSTM system. Circles repre-
sent evaluation sets containing just hs data, while triangles represent
evaluation sets containing hs+pl data.

EER [%]
iP-van FF iP-sim

hs
MST1 3.09 3.94 3.08
CL2 2.83 3.53 2.80

hs+pl
MST1 2.92 3.23 2.88
CL2 2.59 2.44 2.76

Table 4: Performance comparison between MST1 and CL2.

we have access to hs+pl we can further decrease the detec-
tion error compared with just using a text-dependent system.
If we then include a last curriculum learning stage with aug-
mented data, as the CL2 system does, we get a further EER
reduction on all evaluation sets (down to 2.59%, 2.44%, and
2.76% EER on iP-van, FF, and iP-sim, respectively).

As a final sanity check, Table 4 shows the results of a
system trained using MST1, which produces a model that has
seen as much data as the model produced by CL2. However,
we can see that CL2 consistently outperforms MST1 at every
point of comparison. Furthermore, because it had so much
more data to handle, the MST1 model also took substantially
longer to train and converge.

5. CONCLUSIONS

The system described here, when trained following a cur-
riculum learning procedure, improves both the robustness
against various acoustic conditions and the generalisability
towards less constrained-text scenarios. Compared to the
DNN baseline system, the proposed speaker discriminative
system yields a relative EER reduction of 30–70% on both
text-dependent and text-independent conditions while keep-
ing the network size small enough to be deployed on device.
Future work may focus towards automated curriculum learn-
ing [18] where a teacher network automatically selects which
tasks the student network has to learn [19].
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Munos, and Koray Kavukcuoglu, “Automated cur-
riculum learning for neural networks,” CoRR, vol.
abs/1704.03003, pp. 10, 2017.

[19] Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman, “Teacher-student curriculum learning,”
CoRR, vol. abs/1707.00183, pp. 14, 2017.

5328


