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ABSTRACT 

Accent conversion (AC) aims to transform non-native speech 
to sound as if the speaker had a native accent. This can be 
achieved by mapping source spectra from a native speaker 
into the acoustic space of the non-native speaker. In prior 
work, we proposed an AC approach that matches frames 
between the two speakers based on their acoustic similarity 
after compensating for differences in vocal tract length. In 
this paper, we propose an approach that matches frames 
between the two speakers based on their phonetic (rather than 
acoustic) similarity. Namely, we map frames from the two 
speakers into a phonetic posteriorgram using speaker-
independent acoustic models trained on native speech. We 
evaluate the proposed algorithm on a corpus containing 
multiple native and non-native speakers. Compared to the 
previous AC algorithm, the proposed algorithm improves the 
ratings of acoustic quality (20% increase in mean opinion 
score) and native accent (69% preference) while retaining the 
voice identity of the non-native speaker. 

Index Terms—speech synthesis, accent conversion, 
frame pairing, posteriorgram, acoustic model 

1. INTRODUCTION 

Learners who acquire a second language (L2) after a “critical 
age” [1] usually speak with a non-native accent. This may 
result in lower intelligibility [2] and speakers can be 
subjected to discriminatory attitudes [3]. Therefore, L2 
learners interacting with native speakers have much to gain 
by improving their pronunciation. Several studies [4, 5] have 
suggested that having a suitable native speaker to imitate – a 
so-called “golden speaker,” can be beneficial in 
pronunciation training. Felps et al. [6] suggested that such a 
“golden speaker” could be created by resynthesizing the L2 
learner’s own voice but with a native accent.  

Traditional voice-conversion (VC) methods [7-10] 
cannot be used for this purpose since they cannot decouple 
the speaker’s voice quality from their pronunciation, i.e., they 
assume that pronunciation is part of the speaker’s identity. To 
address this issue, Aryal and Gutierrez-Osuna [11] proposed 
a modified VC method, where source frames (i.e., from the 
native speaker) and target frames (i.e., from the L2 learner) 
were paired based on their acoustic similarity. In a first step, 
the authors apply vocal-tract length normalization (VTLN) to 
the source speech, so it matches the target’s vocal-tract 

length. Then, each frame in the source corpus is paired with 
the closest frame in the target corpus, and vice versa. Though 
VTLN did improve frame pairing (e.g., compared to forced 
alignment), vocal-tract length is just one of potentially many 
differences between two speakers, and it is too coarse to 
account for differences in pronunciation.  

To address this issue, we present an approach that 
matches source and target frames based on their phonetic 
content. Leveraging advances in acoustic modeling [12], we 
extract phonetic information from the posteriorgram [13]. In 
a first step, we compute the posteriorgram for each source and 
target speech frame through a speaker-independent acoustic 
model trained on native speech. Then, we use the symmetric 
Kullback-Leibler (KL) divergence in the posteriorgram space 
to match source and target frames. The result is a set of 
source-target frames that are aligned based on their phonetic 
similarity. In a final step, we use the frame pairs to train a 
GMM that models the joint distribution of source and target 
Mel-Cepstral Coefficients (MCEPs), then map source 
MCEPs into target MCEPs using maximum likelihood 
estimation of spectral parameter trajectories considering the 
global variance of the target speaker. 

Relation to prior work. Previous AC methods directly 
modify speech features that carry accent information, 
including prosody, formants, spectral envelopes, or 
articulatory gestures [6, 14-16]. In contrast, our approach 
uses VC techniques to capture the voice identity of the L2 
learner while preserving the native speaker’s pronunciation 
characteristics – both segmental and prosodic. Unlike VC 
methods, however, we avoid the issue of time aligning source 
and target utterances (which is problematic when the target 
speaker is non-native). Our approach is related to Xie et al. 
[17], who used speaker-adaptive acoustic models to generate 
posteriorgram for VC. In contrast with their work, however, 
we use the posteriorgram to correct mispronunciations and 
reduce non-native accents, and we focus on speaker-
independent acoustic models so we can measure phonetic 
similarity without retraining the acoustic models. 

2. LITERATURE REVIEW 

Existing methods for AC can be broadly categorized into 
acoustic-based and articulatory-based. Among acoustic 
methods, Yan et al. [18] used a VoiceMorph software to 
change the trajectories of the formants, pitch, and duration of 
speech to convert between three different English accents. 
Huckvale and Yanagisawa [15] blended the spectral envelope  
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Fig. 1: (a) conventional VC approach; the L1 and L2 frames are 
time-aligned following their ordering in the data; (b) the AC 
baseline that uses acoustic similarity through VTLN to pair 
frames; (c) the proposed AC algorithm that uses phonetic 
similarity to pair frames 

of non-native speech with its native counterpart through voice 
morphing to reduce the accent. Other acoustic methods for 
AC have used spectral-envelope vocoders [6] and voice 
morphing [16]. 

An alternative to acoustic methods is to consider 
articulatory gestures. Along these lines, Felps et al. [14] used 
an articulatory synthesizer based on unit-selection to replace 
mispronounced L2 diphones with those from the L2 corpus 
that matched the articulatory configuration of a reference 
utterance from a native speaker. Later, Aryal and Gutierrez 
[19] used GMMs and DNNs [20] to map an L2 speaker’s 
articulatory gestures into acoustics, then drove the 
GMM/DNN with articulatory gestures from a reference 
utterance from a native speaker. 

3. METHODS 

Conventional voice conversion methods use time alignment 
to pair frames from source and target utterances, see Fig. 1 
(a). As such, a VC model trained from time-aligned frame 
pairs will retain the L2 speaker’s accent. Instead, to perform 
accent conversion, the pairing must be based on the phonetic 
similarity between source and target frames. 

3.1. Frame pairing based on phonetic similarity 

Accordingly, our proposed approach uses the phonetic 

posteriorgram to pair acoustic frames from the source and 
target speakers. Our rationale is simple: if a speech recognizer 
trained on native speech data determines that an L2 speech 
segment �  is close to the native speech production of a 
particular phoneme, then it is reasonable to pair up � with an 
native speech segment � with the same phonetic label. See 
Fig. 1 (c). 

Our approach works as follows. In a first step, we 
compute a feature vector of phonetic posteriors for speech 
frames from the two speakers: 

ℒ��
= [�(��|��), �(��|��), … ,  �(��|��)] (1) 

where ��  is the acoustic feature vector of the � th speech 
frame; � = {��,  ��, … ,  ��}  is the predefined senone set; 

�������� is the conditional probability that the speech frame 

belongs to senone �� given ��; ∑ �(��|��)� = 1.  

We compute phonetic posteriors using DNN acoustic 
models, the state-of-the-art for large vocabulary continuous 
speech recognition tasks. Namely, we adopt a p-norm DNN 
[21] with multiple p-norm and normalization layers between 
inputs and outputs. Each p-norm layer uses the p-norm non-
linearity followed by a normalization layer that scales down 
all dimensions of its input in order to stop the average squared 
output from exceeding one. Inputs to the DNN consist of 
concatenated MFCC frames �, whereas target outputs � are 
senones obtained from forced-alignment using a pre-trained 
acoustic model. After the DNN is fine-tuned using Stochastic 
Gradient Descent, we compute the posterior probability of a 
senone using the softmax non-linearity: 

�������� =
exp���

��

∑ exp(��
� )�

(2) 

where ��
�  is the output of the hidden layer that precedes the 

softmax layer. Additional details on DNN acoustic modeling 
may be found in [12]. 
Given phonetic posterior feature vectors ℒ��

 and ℒ��
, we 

calculate their distance using the symmetric KL divergence, 

� �ℒ��
, ℒ��

� = �ℒ��
− ℒ��

� ⋅ �log ℒ��
− log ℒ��

� (3) 

For each source (i.e., native) frame ��  we find its closest 
target (i.e., L2) frame ��

∗ as, 

��
∗ = argmin

∀�
��ℒ��

, ℒ�� (4) 

Likewise, for each L2 frame �� we find its closest native frame ��
∗, 

��
∗ = argmin

∀�
��ℒ�, ℒ��

� (5) 

The resulting frame pairs are used to train a GMM. 

3.2. Baseline methods for frame pairing 

We compared the proposed posteriorgram method against 
two baseline techniques for frame pairing: the acoustic 
similarity method of Aryal and Gutierrez-Osuna [11], and 
dynamic time warping (DTW).   

Baseline 1. Following [11], we measured acoustic similarity 
as the inverse of the L2-norm between the source and target 
speaker, after normalizing the source speaker to match the 
vocal tract length of the L2 speaker; see Fig. 1 (b). 

(a) VC: time-alignment

(b) AC (baseline): acoustic similarity

(c) AC (proposed): phonetic similarity
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In a first step, we learn a VTLN transform to reduce 
physiological differences in vocal tract between the two 
speakers. For this purpose, we time-align parallel training 
utterances of the two speakers, each utterance represented as 
a sequence of MFCCs. Following Panchapagesan and Alwan 
[22], we then learn a linear transform between the MFCCs of 
both speakers using ridge regression: 

�∗ = argmin
�

‖� − ��‖� (6) 

where � and � are vectors of MFCCs from the native and L2 
speakers, respectively, and �∗ is the VTLN transform. Next, 
for each native vector �� we find its closest L2 vector ��

∗ as: 

��
∗ = argmin

∀�
‖�� − �∗�‖� (7) 

We repeat the process for each L2 vector �� to find its closest 
match ��

∗: 
��

∗ = argmin
∀�

‖� − �∗��‖
� (8) 

The above process results in a lookup table where each native 
and L2 frame in the database is paired with the closest one 
from the other speaker. 

Baseline 2. As our second baseline method, we use DTW to 
time-align source and target frames. 

3.3. Spectral conversion 

To ensure a fair comparison among the three frame-pairing 
methods, we use a common spectral conversion technique to 
map a source speaker’s spectral features to match a target 
speaker. Namely, we use a GMM to model the joint 
distribution of source and target frame pairs and then use 
maximum likelihood parameter generation (MLPG) that also 
considers global variance of the target speaker to generate the 
converted speech given a testing speech signal from the 
source speaker. Additional details may be found in [7]. 

3.4. Pitch scaling 

Previous studies [6, 15, 18] have shown that prosody 
modification is an essential part of accent conversion. 
Following Toda et al. [7], we use the pitch trajectory from the 
source (native) speaker, which captures native intonation 
patterns, then normalize it to match the pitch range of the 
target (L2) speaker using mean and variance normalization in 
log �� space.  

4. EXPERIMENT SETUP 

4.1. DNN acoustic model 

We obtained a pre-trained DNN acoustic model via Kaldi’s 
[23] online archive1. The model is a p-norm DNN with 18 
hidden layers. The input features are computed from a 13-dim 
MFCC vectors with a 9-frame context; the concatenated 117-
dim (13 × 9)  MFCCs are passed through a Linear 
Discriminant Analysis to generate a 40-dim input feature 
vector. The output layer has 5,816 nodes that correspond to 
the senones. The DNN acoustic model was trained on 

                                                           
1 http://kaldi-asr.org/models.html 

Librispeech’s [24] training set, which contains 960 hours of 
native English speech. For more details about the DNN 
acoustic model we used, please refer to [25]. 

4.2. Speech corpus 

For the native speech corpus, we used two speakers from the 
CMU ARCTIC dataset [26]: BDL (male) and CLB (female). 
For the non-native (L2) English speech corpus, we collected 
recordings from five speakers: two native Hindi speakers 
(RRBI, male; TNI, female), two native Korean speakers 
(HKK and YKWK, both male); and one native Arabic 
speaker (ABA, male). Each L2 speaker produced the full 
ARCTIC dataset. For each AC direction, we used 100 parallel 
utterances for training and 50 utterances for testing; there was 
no overlap between the two sets.  

4.3. System configuration 

We used STRAIGHT [27] to decompose speech into 
aperiodicity (AP), ��, and a 513-dim spectral envelope. Then, 
we computed 25 MFCCs from the spectral envelopes to learn 
the VTLN transform and pair up frames using acoustic 
similarity. We also computed 25 MCEPs from the spectral 
envelopes as the acoustic feature (excluding MCEP0) to train 
the GMMs and convert speech from the native speaker to the 
L2 speaker. Following our prior work [11], all GMMs had 
128 mixture components with diagonal covariance matrices. 
Once we converted native MCEPs to the L2’s space, we 
reconstructed the spectrogram from the converted MCEPs 
and combined it with the native’s AP and normalized �� to 
synthesize speech. 

 We considered five speaker pairings for accent 
conversion: BDL to RRBI, BDL to HKK, BDL to YKWK, 
BDL to ABA, and CLB to TNI. For each pairing, we 
performed accent conversion on all 50 testing utterances. 

5. RESULTS 

To evaluate the three systems (posteriorgram, two baselines), 
we conducted listening studies on Mechanical Turk to rate the 
acoustic quality, speaker identity and native accent of the 
resynthesized speech. All human subjects passed a screening 
test that consisted of identifying various American English 
accents. All test samples were randomly ordered. Audio 
samples are available at: http://people.tamu.edu/~gu 
anlong.zhao/icassp18_demo.html 

  

Fig. 2: (a) Speech quality results with 95% confidence interval (b) 
Speaker identity results (AC-L2: VSS b/w AC and L2 speaker) 
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Fig. 3: Accent preference score with 95% confidence interval 

Acoustic quality. We used a standard five-point (1-Bad, 
5-Excellent) Mean Opinion Score (MOS) to rate the acoustic 
quality of the synthesized speech. Thirty listeners rated 150 
test samples: 50 per system, ten per conversion direction. 
Results are shown in Fig. 2a. We found no statistical 
differences between the two baseline systems (2.6 vs. 2.5; 
� = 0.43; two-tailed t-test; null hypothesis: the two averages 
are the same). The proposed method (posteriorgram) received 
a 3.0 MOS, which was statistically higher than baseline 1 
(20% improvement; � ≪ 0.001 ; single-tailed t-test) and 
baseline 2 (16% improvement; � ≪ 0.001; single-tailed t-
test). These results suggest that the proposed algorithm can 
boost the acoustic quality of the converted speech 
significantly using exactly the same training data without 
even having to modify the GMM training and spectral 
conversion methods. 

Speaker identity. Following [28], we used a voice 
similarity score (VSS) ranging from -7 (definitely different 
speakers) to +7 (definitely same speaker) to assess the 
speaker’s identity. Twenty-six participants rated 150 
utterance pairs: 50 pairs per system (25 AC-native (L1) and 
25 AC-L2 pairs), ten pairs per conversion direction 
(randomly drawn from the 50 testing utterances). 
Presentation order within a single utterance pair was 
counterbalanced. Native (L1) and L2 utterances were 
resynthesized from their MCEPs to match the acoustic quality 
of the accent conversions. In addition, and following [6], we 
played utterances in reverse to prevent the accent from 
interfering with the perception of voice identity. Results are 
summarized in Fig. 2b. Overall, the three systems have 
similar voice similarity scores, and AC-native received a VSS 
around -3.5, indicating that listeners were “confident” that the 
AC utterances had a different voice identity from those of the 
native speaker. Likewise, AC-L2 pairs received a VSS 
around 3.5, indicating that listeners were “confident” that the 
same speaker produced the AC and L2 utterances. We found 
no statistically-significant differences in VSS between the 
posteriorgram and baseline methods (AC-native VSS, � ≫
0.05 ; AC-L2 VSS, � ≫ 0.05 ; two-tailed t-test; null 
hypothesis: the averages of the two comparison groups are 
the same), which shows that the posteriorgram method does 
not sacrifice the converted speech’s voice identity. 

Accentedness. In a final experiment, we used a 

preference test to determine if the posteriogram method does 
indeed make L2 speech sound more native-like. Thirty native 
English speakers rated 150 utterance pairs: 50 pairs for each 
comparison: Posteriorgram vs. Baseline 1, Posteriorgram vs. 
Baseline 2, and Posteriorgram vs. L2 (i.e., original utterances 
from the L2 speaker), ten pairs per conversion direction 
randomly drawn from the 50 testing utterances. The order of 
the systems within a single comparison pair was 
counterbalanced; each utterances pair was from the same 
sentence. Listeners were asked to choose the most native-like 
(least foreign) utterance from each pair. Aryal and Gutierrez 
[11] had previously established that Baseline 1 outperforms 
Baseline 2 and L2 in this task; therefore, we omitted those 
comparisons in this study. Results are summarized in Fig. 3. 
On average, listeners were very confident (mean: 98%, STD: 
3%) that the Posteriorgram conversions were more native-
like than the original L2 utterances. More importantly, 
listeners were positive that the Posteriorgram method 
outperformed both Baseline 1 (mean: 69%, STD: 11%) and 
Baseline 2 (mean: 72%, STD: 10%). All the above preference 
scores are statistically significant (� ≪ 0.001; single-tailed t-
test) compared with chance levels (50%).  

6. CONCLUSION 

We have proposed a new frame-pairing method based on the 
phonetic similarity between acoustic frames. To measure 
phonetic similarity, we map source and target frames into a 
phonetic posteriorgram space using speaker-independent 
acoustic models trained on a native English corpus. Through 
a series of perceptual studies, we have shown that merely 
changing the frame pairing method can lead to significant 
improvement in acoustic quality and “nativeness” while 
keeping the voice quality of the L2 learner. Our results also 
show that the approach works well across multiple L2 
speakers with different native tongues. Our approach only 
requires 5-10 minutes of speech data from the L2 learner, 
making it practical for pronunciation training in realistic 
settings [29].  

A few future directions are worth exploring. At present, 
pairing speech frames requires computing pairwise 
symmetric KL divergence for all possible frame 
combinations in a high-dimensional (posteriorgram) space. 
Though our implementation was carefully optimized, it is still 
computationally expensive (it takes about 10 minutes on a 
high-end desktop to process 100 parallel utterances). Further 
reductions in compute time may be achieved via 
dimensionality reduction and clustering. Another future 
direction is to directly modify the speech waveform [8], 
which has been shown to reduce over-smoothness in the 
synthesis. Our ultimate goal is to apply this technique to 
pronunciation training in classroom settings.  
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