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ABSTRACT

Speaking style plays an important role in the expressivity of speech
for communication. Hence speaking style is very important for syn-
thetic speech as well. Speaking style adaptation faces the difficulty
that the data of specific styles may be limited and difficult to ob-
tain in large amounts. A possible solution is to leverage data from
speaking styles that are more available, to train the speech synthe-
sizer and then adapt it to the target style for which the data is scarce.
Conventional DNN adaptation approaches directly update the top
layers of a well-trained, style-dependent model towards the target
style. The detailed local context-level mismatch between the origi-
nal and the target styles is not considered. In order to address this is-
sue, two frame-level input feature-based style adaptation techniques
are investigated in this paper. We will use style features extracted
from (1) a target-style data trained bottleneck DNN, and (2) a novel
cross-style residual feature regression DNN. These features are used
for top-layer adaptation of a well-trained style-dependent synthesis
network. Experimental results on adapting the declarative style to
the interrogative style demonstrate the effectiveness of our proposed
style features in improving the expressiveness of synthesizing speech
for the interrogative style, while maintaining speech quality.

Index Terms— style adaptation, speaking style, style feature,
speech synthesis, expressiveness

1. INTRODUCTION

Recent progress of deep neural network (DNN) techniques has
shown great promise in generating natural and intelligible speech
[1–3]. However, the expressiveness of text-to-speech (TTS) syn-
thesis still needs to be improved. There are many factors affecting
the expressiveness of generated speech. One of the most impor-
tant factors is speaking style [4]. A suitable speaking style can
vividly express the information encoded in the speech signal and
enhance the interactions between human and machines. Speech
with same content but with different speaking styles may convey
different meanings, for example, represented by interrogative and
declarative styles. To train from scratch a TTS model with a specific
style requires a large amount of matched training data. However,
data of some specific speaking styles, for example, the interrogative
style, are difficult to obtain in large quantities. One solution to this
problem is to use speaking style adaptation techniques leveraging
large quantities of data with widely available style(s) for generating
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speech with special style. In our daily lives, the declarative style
is most commonly used and hence the data is widely available. In
contrast, although the interrogative style is essentially for conveying
the semantics of a question, data of the interrogative style is often
very limited. We aim to conduct research in speaking style adaption
for any style(s). As an initial step, we select the interrogative style
for which we do not have much data, and apply adaptation to the
DNN-based speech synthesis system, which is trained on declarative
style data, for generating interrogative style output.

The differences between styles manifest themselves at multiple
levels, i.e., at the global, utterance level and also the local, segmen-
tal level. For example, if we consider the differences between the
declarative and interrogative styles at the global level—the mean
pitch value of the interrogative style is much higher than that of
declarative style in an utterance [5]. On the other hand, at the lo-
cal level, words carrying interrogative information have pitch value
raised more intensively [6].

Speaker and style adaptation has been thoroughly investigated
in hidden Markov model (HMM)-based synthesis approaches [7, 8].
Deep neural network (DNN)-based approaches have demonstrated
effectiveness in speaker adaptation for automatic speech recogni-
tion (ASR) [9–13], which has also drawn increasing interests from
TTS researchers [14–16]. Existing adaptation methods can be cat-
egorized into three main types: 1) Input feature-based adaptation
and augmentation—utterance-level speaker features, for example,
speaker codes [16], i-vector [15] and d-vector [17], are incorpo-
rated into input features to improve controllability over the target
voice of the generated speech and have been shown effective. 2)
Model-based adaptation—retraining the top regression layers of a
well-trained model has been investigated in [14]. Learning hid-
den unit contribution (LHUC) [18] is applied to speaker adaptation
in [15]. 3) Output feature transformation—a transformation func-
tion is built to transform the original predicted acoustic features to
the target voice [15, 19].

A major issue with the existing adaptation approaches, as de-
scribed above, is that the mismatch between source and target voices
is only considered at a global level (e.g., speaker or utterance level),
while the more detailed mismatch at the local context level are not
explicitly modeled. Consequently, the methods do not perform well
for style adaptation.

In order to address the above issue, frame level feature-based
adaptation methods for speaking style are investigated in this paper.
In contrast to the use of utterance or speaker level features, frame
level features encoding the characteristics of interrogative style
speech are fed into the top layers of a large, well-trained synthesis
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DNN constructed with sufficient declarative style data. The frame
level features are used as auxiliary input features to facilitate a more
flexible local context level style adaptation. Two forms of style
features are used: the first are bottleneck features (BNFs) extracted
from a compact synthesis DNN trained using interrogative data only.
The second explicitly encodes the difference between styles in the
form of residual features (RFs) predicted by a special DNN, which
is designed to learn such difference, using the offset between their
acoustic features.

This paper is organised as follows: Section 2 reviews model-
based style adaptation on retraining of DNN top layer parameters.
Two forms of input feature-based style adaptation methods are pro-
posed in Section 3. Section 4 presents the detail of experiments. The
conclusion is drawn in Section 5.

2. MODEL BASED STYLE ADAPTATION

In DNN-based speech synthesis, the task is to train a network to
map linguistic features to acoustic features. Large amounts of train-
ing data is required to robustly estimate model parameters. For the
declarative style, the training data is often widely available and thus
adequate for building a good TTS system. However, for the interrog-
ative style, it is often more difficult to obtain training data in large
amounts to develop a high-quality TTS system. One commonly used
approach to handle this problem is to adapt the top layer parameters
of a well trained and large sized network on sufficient quantities of
declarative style data to the target interrogative style, while fixing
the lower layer parameters [14].

Referencing previous work [14, 20, 21], the baseline TTS adap-
tation system in this paper is a bidirectional long short term-memory
(BLSTM) recurrent neural network (RNN) model with its top layers
adapted. The model architecture is illustrated on the left side of
Fig. 1, consisting of lower-level fixed layers and top-level adapted
layers. During interrogative style adaptation, the model is initially
trained with large amounts of declarative data. In the subsequent
adaptation stage, another set of interrogative top-level layers are
stacked upon the lower-level fixed layers and retrained with inter-
rogative style data. The lower-level fixed layers and the resulting top
layers are then used to generate interrogative acoustic features. Us-
ing this technique, a good trade-off between modeling precision and
robustness can be achieved. However, the detailed, frame level sim-
ilarity and dissimilarity in style, and their variations over time, are
not explicitly modeled in this framework, as discussed in Section 1.

3. FEATURE BASED STYLE ADAPTATION

To provide frame-various interrogative information for the adapta-
tion, we propose to extract some compact style features with style
information from the sparse and high-dimensional input linguistic
features. The extracted style features are concatenated with the out-
puts of lower-level fixed hidden layers, and fed to the stacked top
layers. The top layers are retrained as conventional approaches. The
model architecture is shown in the right side of Fig. 1. The fol-
lowing subsections describe the extraction of two forms of proposed
style features, BNFs and RFs.

3.1. Interrogative style bottleneck features

BNFs are extracted from the activation outputs of the hidden layer
with a smaller number of hidden units, compared to the other hid-
den layers (e.g., 64 vs. 512 in this paper) [22]. The small layer
size is designed to constrict the feature representation learned inside

Fig. 1. The architecture of adaptation models. (Left: the conven-
tional model-based style adaptation. Right: the proposed feature-
based style adaptation)

the DNN to a compact, lower dimensional space. Bottleneck fea-
tures have been successfully applied in ASR [22–25]. Doddipatla
et al. [24] proposes to extract speaker dependent BNFs for speaker
adaptation in ASR. Wu et al. [26] also demonstrates the effectiveness
of BNFs in TTS as input features. In this work, to extract the BNFs,
we first train a naive bottleneck DNN (bDNN) model with a bottle-
neck hidden layer based on the interrogative training data, as shown
in Fig. 2(a). The activation outputs of the bottleneck hidden layer are
then used as the BNFs for adapting the top layers. Though bDNN
is trained with limited data and has a reduced ability to generate in-
terrogative acoustic features compared with larger sized networks
trained with sufficient data, it is hoped the resulting BNFs carry the
style dependent information learned from the interrogative data.

3.2. Style difference residual features

To further improve the compactness of the style features, we in-
vestigate extracting features that can explicitly represent style dif-
ferences. The frame level offsets between the desired interrogative
style acoustic features and the acoustic features predicted using
the unadapted declarative style DNN are used to encode such style
difference in the RFs. These RFs are then used as style features to
facilitate the top layer adaptation shown on the right side of Fig. 1.
The extraction of RFs are conducted in the following stages, as
shown in Fig. 2(b):
Stage 1: Train a DNN model, referred as decDNN, with large
amounts of declarative data;
Stage 2: With the trained decDNN, generate the declarative acous-
tic features with the linguistic features extracted from interrogative
data. Subtract the generated declarative features from the interroga-
tive acoustic features to obtain the offset between the declarative and
interrogative acoustic features. Train another DNN model, referred
as rDNN, to map the extracted linguistic features to corresponding
obtained acoustic feature offset.
Stage 3: The given linguistic features are fed to the rDNN to obtain
the corresponding RFs.

4. EXPERIMENTS

4.1. Corpus

In our experiment, a corpus of one female Mandarin native speaker
is used, consisting of 5,000 utterances (around 5 hours) with declara-
tive style and 484 utterances (around 25 minutes) with interrogative
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Fig. 2. The procedure of extraction of BNFs and RFs. (a) BNF extraction. Stage 1: Training of the interrogative bDNN; Stage 2: Extracting
the bottleneck layer outputs as BNFs. (b) RF extraction. Stage 1: Training of the decDNN; Stage 2: Obtaining of declarative-interrogative
acoustic feature differential and training of the rDNN; Stage 3: Prediction of RFs of the given linguistic features.

style. There are totally 98,084 syllable samples in total, covering
1,660 tonal syllable classes. The corpus is originally prepared for
concatenative speech synthesis. The syllable boundary information
is manually labeled by checking the forced alignment result with
HMM. We use all the 5,000 utterances as training data to train the
TTS system with declarative style. 400 utterances with interrogative
style are used as adaptation data and the remaining 84 utterances as
testing data. The speech signals are sampled at 16 kHz, windowed
by a 25-ms window and shifted every 5 ms. 80% of the starting and
ending silence frames are removed. We extract 39-dimensional mel-
cepstral coefficients (MCEPs) plus log energy, 25-dimensional band-
aperiodicity parameters (BAPs), logarithmic fundamental frequency
(LF0), their delta and voice/unvoiced (V/UV) decision as frame-
level acoustic features. LF0 is interpolated in unvoiced frames. For
linguistic features, we use syllable features and prosodic features,
e.g., prosodic word and prosodic phrase features. The input linguis-
tic features for each syllable include 291 binary features for categori-
cal linguistic contexts (e.g., initial or final of syllable), and 35 numer-
ical features for numerical linguistic information (e.g., the position
of current syllable in a prosody word). In this work, we directly use
the manually labeled syllable duration information in the input lin-
guistic features. All numerical linguistic features and acoustic fea-
tures are normalised to have zero mean and unit variance. After the
mapping from linguistic features to acoustic features is learned, the
generated acoustic features are fed to STRAIGHT [27] to synthesize
speech waveform.

4.2. Experimental setup

We train three systems as baseline systems to evaluate the natural-
ness and style expressiveness of our proposed systems. The first
one is a TTS system with interrogative style, referred as INT. It is
trained with only the adaptation data (i.e., 400 interrogative utter-
ances). INT is composed of one feed-forward (FF) layer with 256
units with hyperbolic tangent activations (all FF layers in this work
use hyperbolic tangent function unless specified), one BLSTM layer
with 256 memory blocks per direction, and one output layer with lin-
ear activation. The second baseline system is a TTS system trained
with the training data (i.e., 5,000 declarative utterances), denoted as
DEC. DEC has five layers: two FF layers with 256 units per layer,
two BLSTM layers with 256 memory blocks per direction, and one
linear output layer. The third baseline system, DEC-INT, is a TTS
adaptation system as described in Section 2, as shown in the left side

of Fig. 1. DEC-INT directly borrows the lower three layers from the
trained DEC, including two FF layers and one BLSTM layer. Two
top layers are stacked upon the lower layers, including one BLSTM
layers with 256 memory blocks per direction and one linear output
layer. The top layers are then trained with the adaptation data with
the lower layers fixed.

For style feature extraction, the bDNN in Fig. 2(a) consists of
four hidden FF layers and one linear output layer. The last but one
hidden layer is the bottleneck layer with 64 units, and the other hid-
den layers have 512 units. The bDNN is trained with the adaptation
data. The decDNN has the same architecture as DEC and is trained
with the declarative training data. The rDNN is composed of three
FF hidden layers with 512 units and one linear output layer. The
declarative-interrogative acoustic feature offset is calculated on the
numerical acoustic features of the adaptation data and its dimension
is 66. The feature offset data is then used to train the rDNN. With
the trained bDNN and rDNN, we extract the BNFs and RFs for each
utterance in the adaptation data and the testing data.

To evaluate the proposed framework with style features, we
build three systems, i.e., DEC-b-INT, DEC-r-INT, DEC-br-INT,
with different style feature configurations. ‘b’, ‘r’, ‘br’ stand for
BNFs, RFs and the concatenation of BNFs and RFs. For these
three systems, the configurations of lower-level fixed layers and top
stacked adapted layers are the same as DEC-INT. The concatenation
of lower fixed layer outputs and the style features is fed to the top
adapted layers. The adaptation data is used to train the top adapted
layers, with the lower layers fixed.

4.3. Objective evaluation

To objectively evaluate the performance of the above systems, we
adopt four measures, mel-cepstral distortion (MCD), BAP distortion,
F0 distortion in the root mean squared error (RMSE), and V/UV er-
ror rate for the four kinds of acoustic features we used. As shown
in Table 1, our proposed systems outperform the three baseline sys-
tems, i.e., INT, DEC, and DEC-INT, on all the four metrics. We also
investigate the effect of adaptation data size on the system perfor-
mance. Experimental results show that the proposed systems achieve
better performance on various data size, as shown in Fig. 3. To op-
timize the bottleneck layer size, we evaluate the results of different
BNF sizes in DEC-b-INT. From the results in Fig. 3, we set the BNF
size as 64.
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Table 1. Objective evaluations for the six systems.
Systems MCD BAP F0 RMSE V/UV Error

(dB) (dB) (Hz) Rate (%)
INT 6.02 4.81 30.01 12.11
DEC 5.63 4.49 30.21 7.74

DEC-INT 5.31 4.42 28.19 7.15
DEC-b-INT 4.98 4.29 27.41 6.83
DEC-r-INT 5.07 4.32 27.56 7.07
DEC-br-INT 4.97 4.29 27.08 6.84

Fig. 3. Objective evaluation of various adaptation data sizes and
bottleneck feature sizes.

4.4. Subjective evaluation

We conduct mean opinion score (MOS) test and AB preference tests
to subjectively evaluate the above systems. 17 utterances are ran-
domly selected from the testing data and synthesized by the six sys-
tems respectively, thus we have 102 utterances to be evaluated. We
invite 20 subjects without listening impairment to participate in the
tests. In the MOS test, each subject listens to each utterance and
give a 5-point scale score of naturalness (5: excellent, 4: good, 3:
fair, 2: poor, 1: bad). Fig. 4 presents the MOS results. The proposed
systems, DEC-r-INT, DEC-b-INT, and DEC-br-INT, achieve signif-
icantly (p < 0.001) better performance than the baseline systems
DEC-INT and INT, and obtain comparable naturalness with DEC.
This demonstrates that the style features can help to maintain the
naturalness.

Fig. 4. MOS test results of various systems.

In each preference test, each subject listens to 17 pairs of utter-

ances generated by two different systems, and provides a interroga-
tive style preference choice: 1) the former is better; 2) the latter is
better; 3) no preference or neutral (The difference between the paired
utterances is difficult to be perceived). The results of preference
tests are given in Fig. 5. DEC-b-INT can significantly (p < 0.001)
outperform the baselines DEC and DEC-INT. The DEC-r-INT also
outperforms the two baselines but is inferior to DEC-b-INT. Interest-
ingly, DEC-br-INT achieves the best performance, which indicates
combining BNFs and RFs gives better performance than individual
ones.

Fig. 5. Preference test results of various systems.

5. CONCLUSIONS

In this paper, we propose an input feature-based adaptation methods
for DNN-based speech synthesis systems. Bottleneck features and
residual features, which encode the finer, local context characteris-
tics of the target style, are fed as auxiliary input features into the
newly stacked top adapted layers of the adaptation model, where the
lower layers are borrowed from a well trained DNN constructed us-
ing data with widely available style. As demonstrated by the exper-
iments conducted on the data of declarative and interrogative styles,
our methods can effectively improve the interrogative style in gen-
erated speech while maintaining a high quality in both objective and
subjective evaluation tests. Since our method has no style-specific
constraint, it can be flexibly applied to adaptation of other speak-
ing styles. In future work, we will investigate duration adaptation
techniques for speaking styles.
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