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ABSTRACT

This paper proposes novel training algorithms for vocoder-free sta-
tistical parametric speech synthesis (SPSS) using short-term Fourier
transform (STFT) spectra. Recently, text-to-speech synthesis using
STFT spectra has been investigated since it can avoid quality degra-
dation caused by the vocoder-based parameterization in conventional
SPSS using a vocoder. In conventional SPSS using a vocoder, we
previously proposed a training algorithm for integrating generative
adversarial network (GAN)-based distribution compensation. To
extend the algorithm to vocoder-free SPSS, we propose low- and
multi-resolution GAN-based training algorithms for vocoder-free
SPSS. In our algorithm that uses the low-resolution GAN, acous-
tic models are trained to minimize the weighted sum of the mean
squared error between natural and generated spectra in the origi-
nal resolution and adversarial loss to deceive discriminative models
in the lower resolution. Since the low-resolution spectra are close
to filter banks and their distribution becomes simpler, GAN-based
distribution compensation works well. Furthermore, we propose
an algorithm using multi-resolution GANs, which uses both the
low-resolution GAN and original-resolution GAN. Experimental
results demonstrate that 1) the low-resolution GAN works robustly
to the setting of its frequency resolution and hyperparameter, and
2) compared the low-, original-, and multi-resolution GANs, the
low-resolution GAN works the best to improve synthetic speech
quality.

Index Terms— Text-to-speech synthesis, vocoder-free SPSS,
STFT spectra, generative adversarial networks, multi-resolution

1. INTRODUCTION

Text-to-speech synthesis (TTS) [1] is a technique to artificially syn-
thesize human speech from linguistic information. Statistical para-
metric speech synthesis (SPSS) [2] using vocoder systems has been
widely investigated because it can easily control the characteristics
of synthetic speech. In conventional SPSS using vocoder systems,
several steps are taken to synthesize desired speech. First, linguis-
tic features and vocoder parameters are extracted from a training
dataset that includes many pairs of text and speech. Then, acous-
tic models, which represent the relationship between the linguistic
features and vocoder parameters, are trained with several criteria
such as the mean squared error (MSE) [3] and minimum generation
error (MGE) [4]. Finally, a synthetic speech waveform is synthe-
sized from the predicted vocoder parameters by using high-quality
vocoder systems such as STRAIGHT [5] and WORLD [6]. The
high-quality vocoders have an important role in SPSS (especially,
hidden Markov model-based SPSS [7, 8] and an early stage of deep
neural network (DNN)-based SPSS [3]), but the quality degradation

by vocoder-based parameterization in state-of-the-art DNN-based
speech synthesis has become a critical problem.

One way to avoid this problem is vocoder-free DNN-based
SPSS, which directly generates low level features before the vocoder-
based parametrization such as short-term Fourier transform (STFT)
spectra [9] and speech waveforms [10, 11]. This paper focuses
on the vocoder-free SPSS using STFT spectra that we synthesize
speech waveform from generated STFT spectra by using Griffin
and Lim’s phase reconstruction [12], not a vocoding process. This
framework can avoid synthesizing buzzy speech caused by the
vocoding process. It also provides a way to incorporate signal-
processing techniques, such as speech enhancement [13], into
speech synthesis training. However, in training the acoustic models,
an over-smoothing effect is often observed in generated vocoder
parameters or STFT spectra and significantly degrades synthetic
speech quality [9, 14]. To address the over-smoothing effect in
conventional SPSS with vocoders, we previously proposed a train-
ing algorithm [15, 16] incorporating generative adversarial networks
(GANs) [17] so that the distribution of generated vocoder parameters
is close to that of natural ones. It can effectively alleviate the over-
smoothing effect and significantly improve synthetic speech quality
without any post-processing methods, which require additional com-
putations to improve speech quality, such as global variance com-
pensation [18], modulation spectrum compensation [19, 20], and
GAN-based post-filtering [21]. However, it is difficult to directly
apply this algorithm to vocoder-free SPSS because the dimensional-
ity of the STFT spectra is high and the distribution is more complex
than that of the vocoder parameters.

To improve synthetic speech quality of vocoder-free SPSS using
STFT spectra, we propose a novel algorithm to train acoustic models
that uses a low-resolution GAN. Through a pooling layer along with
a frequency axis, the STFT spectra are converted into low-resolution
spectra. The training criterion of the acoustic model is the weighted
sum of the MSE between natural and generated STFT spectra in the
original frequency domain and adversarial loss using a discriminator
of the low-frequency-domain GAN. The GAN in the low resolution
can be regarded as compensating the difference between spectral en-
velopes of natural and synthetic speech because the low-resolution
spectra approximately emulate filter banks. Since the spectral en-
velopes are dominant features in quality of synthetic speech and the
effectiveness of the GAN is particularly noticeable in the case of
generating spectral features, we can expect that the GAN-based dis-
tribution compensation improve the speech quality better than us-
ing the GAN in the original resolution. We also propose an algo-
rithm that uses multi-resolution GANs (the low-resolution GAN and
original-resolution GAN). Experimental results indicate that 1) the
low-resolution GAN works robustly against the setting of its fre-
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quency resolution and hyperparameter to control the weight for the
adversarial loss, and 2) comparing among low-, original-, and multi-
resolution GANs reveals that the low-resolution one works best to
improve synthetic speech quality.

2. CONVENTIONAL ALGORITHMS

2.1. DNN-based TTS using STFT spectra
DNN-based acoustic models, which generate STFT spectral am-
plitudes from given linguistic features, are trained to minimize a
loss function of natural and generated spectra. Let y be a natu-
ral spectra sequence [y>1 , · · · ,y>t , · · · ,y>T ]> and ŷ be a gener-
ated spectra sequence [ŷ>1 , · · · , ŷ>t , · · · , ŷ>T ]>, where t and T
denote the frame index and total frame length, respectively. Let
yt = [yt(1), · · · , yt(F )]> denote an STFT spectral amplitude vec-
tor at frame t, where F indicates the number of frequency bins
from 0 Hz to the Nyquist frequency. The loss function for training
the acoustic models is defined as the MSE between natural and
generated spectral amplitudes as follows:

LMSE (y, ŷ) =
1

T
(ŷ − y)> (ŷ − y) . (1)

Referring to the study by Takaki et al. [9], we use the MSE loss
rather than MGE loss [4]. After the training, ŷ is generated from the
acoustic models, and its phase information is reconstructed using
Griffin and Lim’s method [12].

2.2. GAN-based training for SPSS [15]
In our previous study [15], in the same manner as with the algorithm
of GANs [17], discriminative models D(·) are incorporated into the
training, and the acoustic models and discriminative models are it-
eratively optimized. First, the discriminative models are updated to
minimize the following discrimination loss:

L
(GAN)
D (y, ŷ) = L

(GAN)
D,1 (y) + L

(GAN)
D,0 (ŷ) , (2)

L
(GAN)
D,1 (y) = − 1

T

T∑
t=1

logD (yt) , (3)

L
(GAN)
D,0 (ŷ) = − 1

T

T∑
t=1

log (1−D (ŷt)) , (4)

where L(GAN)
D,1 (y) and L

(GAN)
D,0 (ŷ) are the loss functions for natural

and synthetic speech, respectively. The backpropagation algorithm
is used to train D(·) to output 1 for natural speech and 0 for syn-
thetic speech. Then, the acoustic models are updated to minimize
the following loss:

LG (y, ŷ) = LMSE (y, ŷ) + ωD
Eŷ [LMSE]

Eŷ [LADV]
L

(GAN)
ADV (ŷ) , (5)

where L
(GAN)
ADV (ŷ) = L

(GAN)
D,1 (ŷ) is the adversarial loss to deceive

the discriminative models, which makes the distribution of gener-
ated speech parameters close to that of natural speech. ωD is a hy-
perparameter to control the effect of adversarial loss. Eŷ[LMSE] and
Eŷ[LADV] are the expectation values of LMSE and LADV, respec-
tively. Their ratio normalizes the scale of the two losses. Note that,
the MSE loss is used in Eq. (5) instead of MGE loss [15].

3. PROPOSED ALGORITHMS

3.1. Training algorithm for STFT spectral amplitudes genera-
tion using low-resolution GAN
The method described in Subsection 2.2 can be applied to STFT
spectra generation. However, it suffers from a higher dimensionality
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Fig. 1. Loss functions for updating acoustic models in proposed al-
gorithm using multi-resolution GANs. φ(·) is average-pooling func-
tion to convert STFT spectra into low-resolution spectra.

and complex distribution of the STFT spectra. We introduce low-
resolution discriminative models D(L)(·), which distinguish natural
and generated STFT spectra in low frequency resolution. Let φ(·)
be an average-pooling function that converts the STFT spectra in the
original-frequency resolution y into those in the low-frequency res-
olution, y(L). The f -th frequency bin of the low-resolution spectra
at frame t, y(L)

t (f), is calculated as

y
(L)
t (f) =

1

w

−p+(f−1)s+w∑
i=−p+(f−1)s

yt (i) , (6)

where p, w, and s denote the size of zero-padding, width of pooling
window, and stride of pooling, respectively. The term yt(i) takes
0 if i < 0 or i > F . The total number of frequency bins in the
low-frequency resolution F (L) is given as

F (L) =
F + 2p− w

s
+ 1. (7)

The above processes are similar to conversion from a raw STFT
spectra into the filter-bank parameters that represent spectral en-
velopes of speech. The loss function for training the acoustic models
is defined as follows:

L
(Low)
G (y, ŷ) = LMSE (y, ŷ) + ω

(L)
D

Eŷ [LMSE]

Eŷ(L) [LADV]
L

(GAN)
ADV

(
ŷ(L)

)
,

(8)

where ŷ(L) = φ(ŷ(L)), and ω
(L)
D is a hyperparameter to control the

effect of the second term. This loss function can be regarded as the
weighted sum of the MSE in the original resolution and adversarial
loss in the lower resolution. Since the distributions of y(L) and ŷ(L)

are simpler than those of y and ŷ, we can overcome the difficulties
in the training due to the high dimensionality and complex distribu-
tion. Also, we can expect the low-resolution GAN to dramatically
improve the synthetic speech quality because it can capture the dif-
ference between spectral envelopes of natural and synthetic speech,
which are dominant features in terms of the speech quality. The low-
resolution discriminative models are trained in the same manner as
in Eq. (2), but y and ŷ are replaced with y(L) and ŷ(L), respectively.

3.2. Training algorithm for STFT spectral amplitudes genera-
tion using multi-resolution GANs
The proposed algorithm that uses the low-resolution GAN described
in Subsection 3.1 can be extended to use multi-resolution GANs,
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which introduces not only the low-resolution discriminative mod-
els D(L)(·) but also original-resolution discriminative models D(·).
The loss function for training the acoustic models is defined as fol-
lows:

L
(Multi)
G (y, ŷ) = LMSE (y, ŷ) + ωD

Eŷ [LMSE]

Eŷ [LADV]
L

(GAN)
ADV (ŷ)

+ ω
(L)
D

Eŷ [LMSE]

Eŷ(L) [LADV]
L

(GAN)
ADV

(
ŷ(L)

)
.

(9)
When ωD = 0, this loss function is the same as that in Eq. (8).
Figure 1 illustrates the computation procedure of the loss function.
Note that the discriminative models are trained separately.

3.3. Discussion
Kaneko et al. [22] proposed a GAN-based post-filter for STFT spec-
tra. As explained in Section 1, this post-filter-based approach re-
quires additional computation in synthesis, but our algorithms do
not. Also, because the previous work splits the STFT spectra into
several sub-frequency bands and applies GANs to each band inde-
pendently, it ignores the overall spectral structures (i.e., spectral en-
velope) and their correlation. On the other hand, our algorithms can
effectively capture them.

By shifting our research from vocoder-level GANs [15] to
STFT-level GANs (this study), we expect that it will become easier
to extend the GAN-based algorithm, e.g., waveform-level GANs, in
the future.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions
We used speech data of a Japanese female speaker who uttered 4007
sentences. The number of utterances included training and evalu-
ation data were 3808 and 199, respectively. Speech signals were
sampled at a rate of 16 kHz. The frame length, shift length, and FFT
length were set to 400 (25 ms), 80 (5 ms), and 1024 samples, respec-
tively. We used the hamming window for FFT analysis. In the train-
ing phase, linguistic features, which have a real value, and log spec-
tral amplitudes were normalized to have zero-mean unit-variance.
We removed 90% of the silence frames from the training data to im-
prove training accuracy.

The DNN architectures for acoustic and discriminative models
were Feed-Forward networks. The input of the acoustic models
were 444-dimensional vectors including 439-dimensional linguistic
features, 3-dimensional duration features, continuous log F0, and
U/V. The F0 was extracted from speech data by using STRAIGHT
vocoder systems [5]. We constructed DNNs, which predicted dura-
tion and F0 features from linguistic features, in advance. The ar-
chitecture for the acoustic models included 3 × 1024-unit rectified
linear unit (ReLU) [23] hidden layers and a 513-unit linear output
layer. The architecture for the discriminative models in the original
resolution included 3 × 512-unit ReLU hidden layers and one unit
sigmoid output layer. The architectures for the discriminative mod-
els in the lower resolution were almost same as that in the original
resolution; that is, the activation functions used in the hidden and
output layers were ReLU and sigmoid, the number of hidden layers
was 3, but the number of input and hidden units varied in accordance
with the parameters of the pooling function φ(·). In the following
experiments, we fixed p = 6 and s = w/2 in Eq. (7). w was set to
14, 30, and 70. Accordingly, the number of input units FL was set
to 74, 34, 14, and the number of hidden units was set to 128, 64, 32,
respectively.

Table 1. Preference scores of speech quality with their p-values
(original-resolution GAN)

Score p-value
Baseline 0.700 vs. 0.300 < 10−10 ωD = 0.5
ωD = 1.0 0.280 vs. 0.720 < 10−10 Baseline
ωD = 0.5 0.496 vs. 0.504 8.6× 10−1 ωD = 1.0

In the training phase, we initialized the acoustic models by min-
imizing the MSE between natural and generated STFT spectra de-
scribed in Subsection 2.1 with 25 iterations. Iteration means using
all the training data (3808 utterances) once for training. The discrim-
inative models in the original and lower resolution were initialized
using natural speech and generated spectra after the initialization of
the acoustic models. The number of iterations for the initialization
was 5. The proposed training algorithms were used with 25 iter-
ations. The expectation values for scaling the loss functions were
estimated at each iteration step. We used AdaGrad [24] as the opti-
mization algorithm, setting the learning rate to 0.01.

4.2. Subjective evaluations
We conducted subjective evaluations on the quality of the synthetic
speech with various hyperparameter settings. A preference test (AB
test) was conducted to evaluate the quality of speech produced from
several algorithms. 25 listeners participated in each of the follow-
ing evaluations by using our crowd-sourced evaluation systems, and
each listener evaluated 10 samples. The total number of listeners was
375. In the following evaluations, “Baseline” denotes the method
that trains the acoustic models using conventional MSE loss [9], i.e.,
both hyperparameters, ωD and ω

(L)
D in Eq. (9), were set to 0.

4.2.1. Evaluation of original-resolution GAN
First, to investigate the effect of GAN-based training in the original
resolution (i.e., the same as [15]), we fixed ω

(L)
D = 0, and set ωD =

0.5 or 1.0. We compared the quality of “Baseline” and our pro-
posed algorithm using original-resolution GAN with “ωD = 0.5,”
and “ωD = 1.0.” Table 1 shows the experimental results. Compared
with “Baseline,” the methods using the original-resolution GAN sig-
nificantly degraded synthetic speech quality regardless of the hyper-
parameter settings. Therefore, we can confirm that simply apply-
ing the GAN-based training algorithm, which is effective in con-
ventional SPSS with vocoders [15], does not improve STFT spectra
generation.

4.2.2. Evaluation of low-resolution GAN

Next, to investigate effect of w, we fixed ωD = 0 and set ω(L)
D = 1.

We compared the quality of generated speech samples using “Base-
line” and our algorithm using the low-resolution GAN win “w =
14,” “w = 30,” and “w = 70.” Table 2 shows the experimental
results. From the results shown in Table 2(a), we can see that the
proposed algorithm using the low-resolution GAN always achieved
better scores than “Baseline,” regardless of its parameter settings of
the pooling function, which demonstrates the effectiveness of this
algorithm. We set w to 30 in the following evaluation because Ta-
ble 2(b) shows that “w = 30” was the best, although there were no
significant differences among the scores.

We also investigated the effect of the hyperparameter in the low-
resolution GAN. We fixed ωD = 0 and set ω(L)

D = 0.5 or 1.0. We
compared the quality of generated speech using “Baseline” and our
algorithm using the low-resolution GAN with “ω(L)

D = 0.5,” and
“ω(L)

D = 1.0.” Table 3 shows the experimental results. From the
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Fig. 2. STFT spectral magnitudes of natural and synthetic speech. We modified the ranges of temporal axis in (a) for clear illustration.

Table 2. Preference scores of speech quality with their p-values
(low-resolution GAN with various pooling-parameter settings)

(a) Results of comparing “Baseline” with using low-resolution
GAN

Score p-value
w = 14 0.568 vs. 0.432 2.3× 10−3 Baseline
w = 30 0.572 vs. 0.428 1.2× 10−3 Baseline
w = 70 0.528 vs. 0.472 2.1× 10−1 Baseline

(b) Results of proposed algorithms using low-resolution GANs

Score p-value
w = 14 0.488 vs. 0.512 5.9× 10−1 w = 30
w = 30 0.532 vs. 0.468 1.5× 10−1 w = 70
w = 70 0.472 vs. 0.528 2.1× 10−1 w = 14

Table 3. Preference scores of speech quality with their p-values
(low-resolution GAN with various hyperparameter settings)

Score p-value
Baseline 0.456 vs. 0.544 4.9× 10−2 ω

(L)
D = 0.5

ω
(L)
D = 1.0 0.588 vs. 0.412 7.6× 10−5 Baseline

ω
(L)
D = 0.5 0.504 vs. 0.496 8.6× 10−1 ω

(L)
D = 1.0

results, we can conclude that the proposed algorithm using the low-
resolution GAN successfully improved synthetic speech quality re-
gardless of its hyperparameter settings.

4.2.3. Evaluation of multi-resolution GANs
Finally, we examined the effects of the proposed algorithm using
the multi-resolution GAN. We generated speech samples using the
following algorithms:

Original: (ωD, ω
(L)
D ) = (1.0, 0.0)

Low: (ωD, ω
(L)
D ) = (0.0, 1.0)

Multi: (ωD, ω
(L)
D ) = (1.0, 1.0)

Table 4 shows the results, Obviously, the proposed algorithm using
the low-resolution GAN achieved a much higher score than the oth-
ers. To investigate this reason, we plotted the STFT spectral mag-
nitudes of synthetic speech used for the evaluations illustrated in
Fig. 2. We can see that high randomness observed in natural spectra

Table 4. Preference scores of speech quality with their p-values
(multi-resolution GANs)

Score p-value
Low 0.808 vs. 0.192 < 10−10 Multi
Multi 0.492 vs. 0.508 7.2× 10−1 Original

Original 0.192 vs. 0.808 < 10−10 Low

(Fig. 2(a)) was excessively smoothed in synthetic speech of “Base-
line” (Fig. 2(b)), while the proposed three algorithms reproduced
the randomness by using GANs, However, there were some tem-
poral discontinuities in the spectra generated by using original- and
multi-resolution GANs (Figs. 2(d) and (e)), which might consider-
ably degrade the synthetic speech quality. One can address the qual-
ity degradation by using recurrent architectures such as long-short
term memory [25, 26] for the acoustic and discriminative models
to make them capture the temporal dependency of the STFT spec-
tra. Further improvements also can be achieved by conditioning the
GANs with the specific information of the utterance such as the pho-
netic contents, and U/V [27].

5. CONCLUSION

We proposed two training algorithms to incorporate generative ad-
versarial networks (GANs) into vocoder-free speech synthesis using
short-term Fourier transform (STFT) spectra. In the proposed al-
gorithm using a low-resolution GAN, acoustic models are trained
to minimize the mean squared error between natural and generated
STFT spectral amplitudes at the original resolution and the distribu-
tion differences of their distributions at low resolution. This algo-
rithm can be extended to one using multi-resolution GANs, which
also minimizes the distribution differences of natural and generated
STFT spectra at the original resolution. Experimental results indi-
cated that the algorithm using the original-resolution GAN and our
proposed algorithm using multi-resolution GANs degraded synthetic
speech quality, but the proposed algorithm using the low-resolution
GAN successfully improved it. In the future, we will further inves-
tigate the effects of the hyperparameters of the proposed algorithms
and adopt a conditional GAN [28] for training.
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