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ABSTRACT

This paper proposes a voice conversion technique based on WaveNet
to directly generate target audio waveforms from acoustic features
of a source speaker. In voice conversion based on statistical models,
the relation between acoustic features, such as spectral parameters,
extracted from source and target audio waveforms is generally mod-
eled using statistical models, such as Gaussian mixture models and
neural networks. Although modeling the relation between acoustic
features is reasonable and efficient, these models are not optimized
for predicting target audio waveforms because the vocoder param-
eters are used as intermediate representations. To overcome this
problem, we developed a voice conversion method to model the rela-
tion between target audio waveforms and acoustic features extracted
from source audio waveforms using WaveNet, which is a generative
model for audio waveforms. The proposed model can directly gen-
erate converted audio waveforms without vocoders. Experimental
results indicate that the proposed method can generate a more natu-
rally sounding converted speech than that using a conventional DNN
method.

Index Terms— Voice conversion, WaveNet, Deep Neural Net-
work, statistical model

1. INTRODUCTION

Voice conversion is a technique for converting a certain speaker’s
voice into another voice while maintaining linguistic informa-
tion. The technique has been applied to many tasks, such as
speech enhancement, emotion conversion, speaking assistance, post-
processing of text-to-speech (TTS), and other applications [1, 2].

In voice conversion studies, statistical approaches have been
widely used for mapping acoustic features of a source speaker to
those of a target one. The framework of a statistical voice conversion
typically uses a parallel data set, which consists of pairs of speech
data from source and target speakers uttering the same sentences, to
estimate the voice conversion model. Conventional statistical voice
conversion framework is often based on a Gaussian mixture model
(GMM) [3, 4]. This method achieves continuous mapping on the
basis of soft clustering and converts spectral parameters frame-by-
frame on the basis of the minimum mean square error. A more recent
framework that has been widely investigated is based on deep neural
networks (DNNs) [5–8]. DNN-based voice conversion can repre-
sent complex mapping functions from acoustic features for source
speech to ones for target speech. It has been often reported that such
a new approach performs better than a conventional ones, such as a
GMM, in voice conversion. The constructed model can be used to
convert the identity of the source speaker’s arbitrary utterances to
that of the target speaker. However, the naturalness and similarity
of the converted voices are still degraded compared to the natural
voices. One of the major factors causing this degradation is the use
of a vocoder.

Recently, a deep neural network called WaveNet [9] has been
proposed as a generative model that operates directly on audio wave-
forms. WaveNet can model audio waveforms accurately, therefore,
it can directly generate natural-sounding speech without vocoders.
In [9], WaveNet was applied to text-to-speech (TTS) by using lin-
guistic features as additional inputs and achieves improvements from
the state-of-the-art DNN-based method. Additionally, a speaker-
dependent WaveNet vocoder has been proposed. In this method,
WaveNet is used as a waveform generator like the vocoder by uti-
lizing acoustic features for existing vocoders as additional inputs for
WaveNet. It has been demonstrated that the sound quality of the
WaveNet vocoder was significantly improved compared to the mel-
cepstrum vocoder, and could capture source excitation information
more accurately. Also, a technique based on a WaveNet vocoder
for voice conversion was proposed [10]. In this study, the acous-
tic features of the source speaker are converted into those of the
target speaker on the basis of GMMs. The converted acoustic fea-
tures are then passed through the WaveNet vocoder, and the con-
verted speech is generated from the WaveNet vocoder, as shown in
Fig. 1(b). However, in this study, the GMM-based conversion model
and the WaveNet vocoder are modeled independently. Therefore, the
models are not optimized for generating converted audio waveforms.
In this paper, we apply WaveNet to voice conversion as shown in
Fig. 1(c). The proposed method can model audio waveforms of the
target speaker by using the acoustic features of the source speaker as
additional inputs for WaveNet. Consequently, the proposed model
is optimized for predicting the target audio waveforms from acous-
tic features of the source speaker, i.e., it can directly generate au-
dio waveforms with the target speaker’s voice characteristics from
acoustic features of the source speaker.

The rest of this paper is organized as follows. Sections 2 and
3 describe WaveNet and voice conversion based on WaveNet, re-
spectively. The experimental conditions and experimental results
are given in Section 4. Concluding remarks and future work are
presented in Section 5.

2. WAVENET

WaveNet is a generative model for audio waveforms. The input to
the network is a sequence of waveform samples. The joint probabil-
ity of an audio sample sequence x = (x1, . . . , xT ) is factorized as
a product of conditional probabilities as follows:

P (x) =

T∏
t=1

P (xt | x1, . . . , xt−1). (1)

Each audio sample xt is conditioned on the samples from all the pre-
vious time steps. This conditional probability distribution is modeled
by dilated causal convolutions with gated activation units. The form
of the gated activation units of WaveNet is defined as follows:

z = tanh(Wf ∗ x)⊙ σ(Wg ∗ x), (2)
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Fig. 1. Difference between conventional voice conversion, voice
conversion using WaveNet vocoder, and proposed method.
　

where x and z are the input and output to the activation units, respec-
tively. ∗ is a convolution operator and ⊙ is an element-wise product
operator. σ(·) and tanh(·) represent a sigmoid function and a hy-
perbolic tangent, respectively. W represents a convolution weight
for input. The subscripts f and g represent a filter and gate, respec-
tively. In addition, residual [11] and parameterized skip connections
are used throughout the network to speed up convergence and enable
training of much deeper models. The network has no pooling layers,
and the output of the model has the same time dimensionality as the
input. The network outputs a categorical distribution over the next
value xt with a softmax layer.

WaveNet can model the conditional distribution p(x | h) by
giving additional inputs h:

P (x | h) =
T∏

t=1

P (xt | x1, . . . , xt−1,h). (3)

The form of the gated activation units of the WaveNet is defined as
follows:

z = tanh(Wf ∗ x+ Vf ∗ y(h))⊙
σ(Wg ∗ x+ Vg ∗ y(h)). (4)

where Vf is the convolution weight for the auxiliary features. Vf ∗
y(h) and Vg ∗y(h) represent a 1 × 1 convolution calculation. The
variable y(h) is an extended time series of the original auxiliary
features h to be adjusted to x. For TTS, linguistic features, which
represent utterance content, are used as auxiliary features. By us-
ing vocoder parameters, e.g., mel-cepstral coefficients, fundamental
frequency (F0), and voiced/unvoiced values, as auxiliary features,
WaveNet can be used as a vocoder [12].

3. VOICE CONVERSION BASED ON WAVENET

In voice conversion based on statistical models, the relation between
acoustic features extracted from source and target audio waveforms
is modeled by statistical models. In the conversion step, acoustic
features extracted from a source speaker’s audio waveform are con-
verted into acoustic features with a target speaker’s characteristics
by the trained statistical model, and then audio waveforms are gen-
erated by inputting the converted acoustic features into a vocoder.
Although to model the relation between acoustic features is reason-
able and efficient, the model is not optimized for predicting target
audio waveforms because the vocoder parameters are used as inter-
mediate representations. To overcome this problem, we propose a
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Fig. 2. Overview of the proposed method.
　

voice conversion based on WaveNet to directly generate target audio
waveforms from acoustic features of a source speaker.

An overview of the proposed method is shown in Fig. 2. First,
acoustic features are extracted from audio waveforms of source and
target speakers. Then, time alignments between the extracted source
and target feature sequences are obtained by dynamic time warping
(DTW) [13]. In the time alignment step, a constraint for target fea-
ture sequences that are not warped is applied to keep the relation
between the acoustic feature sequence and the sequence of audio
waveform samples of the target speaker. Finally, a WaveNet-based
voice conversion model is trained from the time-aligned acoustic fea-
ture sequences of the source speaker and the audio waveforms of
the target speaker. The model is optimized to predict the target au-
dio waveforms from the acoustic features of the source speaker, i.e.,
it can directly generate audio waveforms with the target speaker’s
voice characteristics from acoustic features of the source speaker.

In the training of the proposed model, mel-cepstral coefficients
extracted from the source speaker’s waveforms and log F0 and
voiced/unvoiced values extracted from the target speaker’s wave-
forms are used as additional inputs h. Only sequences of mel-
cepstral coefficients are warped so that the length of the sequences
becomes the same as that of the mel-cepstral coefficients of the tar-
get speaker. When converting the source speaker’s waveforms, the
log F0 extracted from the waveforms is converted by a simple linear
transformation to equalize the mean and variance of the converted
and target log F0:

p
(Y )
t =

p
(X)
t − µ(X)

σ(X)
× σ(Y ) + µ(Y ), (5)

where p
(Y )
t and p

(X)
t are the converted log F0 and the original

log F0, respectively. µ(X) and µ(Y ) are the means, and σ(X) and
σ(Y ) are the standard deviations of the training data for the source
and the target speakers, respectively. The mel-cepstral coefficients,
voiced/unvoiced values, and transformed log F0 are then input to the
trained WaveNet. The extracted acoustic features generally have a
lower sampling frequency than that of the audio samples. Therefore,
the acoustic features are transformed to sequences with the same
time resolution as the audio samples by upsampling and linear inter-
polation. An overview of the time resolution adjustment of auxiliary
features is shown in Fig. 3.

4. EXPERIMENTS

Evaluation results of the proposed WaveNet-based voice conversion
are presented in this section. Two subjective evaluations were con-
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Fig. 3. Overview of time resolution adjustment of auxiliary features.
　

ducted to evaluate the naturalness and similarity of converted speech.

4.1. Experimental conditions

A Japanese speech database, which was constructed by our research
group, was used in the experiments. The database contains a set of
503 phonetically balanced sentences uttered by three male speak-
ers and one female speaker. The set is the same as the B-set of the
ATR phonetically balanced Japanese speech database [14]. From
the set, 450 sentences were used as training data, with the remain-
ing 53 sentences used as test data. We selected a set consisting of
source and target utterances from two male speakers and a set of
consisting of those from the other male and female speakers. Speech
signals were sampled at 16 kHz, and acoustic features were ex-
tracted with a 5-ms shift. Acoustic feature vectors, consisting of
0th through 34th mel-cepstral coefficients, a log F0 value, and a
voiced/unvoiced value, were extracted from the smoothed spectrum
analyzed by STRAIGHT [15].

In these experiments, the proposed WaveNet-based voice con-
version system (WaveNet-VC) was evaluated by comparing it with
three systems: DNN-VC, WaveNet-vocoder, and DNN-VC+WN-
vocoder.

• WaveNet-VC: A WaveNet-based model with 3 blocks (30
layers in total) was used. Specifically, dilations in 10 layers
were set to 20, 21, 22, . . ., 29, and this was repeated three
times to form a total of 30 dilated causal convolution lay-
ers. The number of channels for dilated causal convolutions
and residual connections were 256 and 512, respectively. The
Adam algorithm [16] was used for network learning, and its
learning rate was manually adjusted to 0.0001 as an initial
value. Audio waveforms were 8-bit µ-law [17] encoded.

• DNN-VC: A conventional DNN-based voice conversion sys-
tem. The DNN used in this system was trained from mel-
cepstral coefficients and their dynamic features. The archi-
tecture of the DNN was a 3-hidden-layer feed-forward neural
network with 1024 units per hidden layer. The sigmoid acti-
vation function was used in the hidden layers, and the linear
activation function was used in the output layer. To obtain
a smooth trajectory of spectral features considering the rela-
tion between static and dynamic features, maximum likeli-
hood parameter generation (MLPG) [18] was applied to the
converted mel-cepstral coefficients. From the smoothed mel-
cepstral coefficients, audio waveforms were generated using
a mel-log spectrum approximation (MLSA) filter [19].

• WaveNet-vocoder: A vocoder rather than a voice conver-
sion system. The architecture of WaveNet for WaveNet-
vocoder was same as the one for WaveNet-VC. For the
input features of WaveNet, mel-cepstral coefficients, log F0

and voiced/unvoiced values extracted from target speaker’s
speech were used.

• DNN-VC+WN-vocoder: The DNN and WaveNet were used
in DNN-VC and WaveNet-vocoder, respectively. The output
of the DNN was applied as the input for the WaveNet.

We conducted mean opinion score (MOS) tests [20] to evaluate the
naturalness of the converted speech and degradation MOS (DMOS)
tests to evaluate the similarity between the target and converted
speech samples in terms of speaker characteristics. The opinion
score was set on a five-point scale (5: for excellent, 4: for good, 3:
for fair, 2: for poor, 1: for bad) in the MOS tests. In the DMOS tests,
a difference five-point scale is defined (5: for very similar, 4: for
quite similar, 3: for similar, 2: for different, 1: for very different).
Fifteen sentences were selected randomly from test data for each
subject. There were ten subjects, who were all Japanese.

4.2. Experimental results

Figures 4 and 5 show the results of the MOS and DMOS tests
for male-to-male conversion. It can be seen that DNN-VC+WN-
vocoder outperformed DNN-VC. These results indicate that the
WaveNet vocoder is able to synthesize much higher quality speech
compared to a MLSA filter. Comparing WaveNet-VC withDNN-
VC+WN-vocoder, WaveNet-VC obtained a higher score in the
MOS test than DNN-VC+WN-vocoder. This result clearly shows
that the proposed method, WaveNet-VC, can generate more natu-
rally sounding converted speech than the system using the WaveNet
vocoder, DNN-VC+WN-vocoder. In addition, WaveNet-VC
showed a large improvement from DNN-VC+WN-vocoder on
the DMOS test. The proposed method can convert voice character-
istics more accurately than DNN-VC+WN-vocoder. These results
indicate that direct modeling from the source speaker’s acoustic fea-
tures to the target speaker’s waveforms is effective and the proposed
method can improve naturalness and speaker similarity. However,
the performance of the proposed method did not reach the perfor-
mance of WaveNet-vocoder. It seems that this degradation was
due to the mismatch between the target waveforms and input time-
warped mel-cepstral features.

Figures 6 and 7 show the results of the MOS and DMOS tests
for male-to-female conversion. It can be seen from Figure 7 that
the scores for speaker similarity show a similar trend as observed
in male-to-male conversion. However, in Figure 6, WaveNet-VC
showed the worst score in naturalness. This is because the in-
telligibility of speech output from WaveNet-VC was degraded.
The speech converted by the proposed method often include pro-
nunciation errors. It seems that these errors may be due to the
mis-alignments between the target waveforms and source acoustic
features by DTW. Impacts of the alignment on the performance of
WaveNet-VC will be investigated in the future.

5. CONCLUSIONS

In this paper, we proposed a WaveNet-based voice conversion model
that can directly generate audio waveforms from a source speaker’s
acoustic features. Experimental results of subjective evaluations
showed that the proposed method outperforms a conventional DNN-
based method in terms of speaker similarity. Future work includes
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Fig. 4. Mean opinion scores for naturalness (male-to-male voice
conversion).

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

DNN-VC DNN-VC+WN-vocoder WaveNet-VC WaveNet-vocoder

D
M

O
S

95% confidence intervals

Fig. 5. Degradation mean opinion scores for similarity (male-to-
male voice conversion).

the evaluation of the proposed model with larger/smaller databases,
the investigation of the auxiliary features for voice conversion based
on WaveNet, and applying the proposed approach to many-to-one
and one-to-many voice conversion.
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