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ABSTRACT 

In previous work we presented a Sparse, Anchor-Based 

Representation of speech (SABR) that uses phonemic “anchors” to 

represent an utterance with a set of sparse non-negative weights. 

SABR is speaker-independent: combining weights from a source 

speaker with anchors from a target speaker can be used for voice 

conversion. Here, we present an extension of the original SABR that 

significantly improves voice conversion synthesis. Namely, we take 

the residual signal from the SABR decomposition of the source 

speaker’s utterance, and warp it to the target speaker’s space using 

a weighted warping function learned from pairs of source-target 

anchors. Using subjective and objective evaluations, we examine the 

performance of adding the warped residual (SABR+Res) to the 

original synthesis (SABR). Specifically, listeners rated SABR+Res 

with an average mean opinion score (MOS) of 3.6, a significant 

improvement compared to 2.2 MOS for SABR alone (𝑝 < 0.01) and 

2.5 MOS for a baseline GMM method (𝑝 < 0.01). In an XAB 

speaker identity test, listeners correctly identified the identity of 

SABR+Res (81%) and SABR (84%) as frequently as a GMM 

method (82%) (𝑝 = 0.70, 𝑝 = 0.35). These results indicate that 

adding the warped residual can dramatically improve synthesis 

while retaining the desirable independent qualities of SABR models. 

Index Terms--sparse coding, voice conversion, residual, 

dynamic frequency warping, weighted frequency warping 

1. INTRODUCTION 

Voice conversion (VC) is the process of taking an utterance from 

one speaker and converting it to sound as if another speaker had 

produced it, i.e., VC combines the linguistic content of the source 

speaker’s utterance with the voice quality of the target speaker. VC 

can be useful in a variety of contexts, from changing the identity of 

speakers in text-to-speech systems [1] to generating “golden 

speakers” in pronunciation training [2]. VC often requires large, 

parallel corpora [3], though some methods [4] relax these 

assumptions. 

In prior work [5], we presented one such method. Termed SABR 

(Sparse, Anchor-Based Representation of speech), this method 

represents an utterance as a sparse, nonnegative linear combination 

of phoneme “anchors”—each anchor being the acoustic centroid for 

a phoneme class. SABR has several desirable properties: it requires 

a very small training corpus, it does not require parallel recordings, 

and it does not require training for each pair of source-target 

speakers. However, the compact anchor set lacks the variability to 

represent the details of an utterance. As a result, the utterance 

representation has a muffled quality. 

This paper proposes a method that significantly improves the 

VC synthesis quality of SABR by warping the residual signal of the 

source utterance to match the acoustic space of the target speaker. 

The method operates as follows. First, we compute a piecewise 

linear warping function for each pair of source-target anchors, i.e., 

one function per phoneme; this step needs to be performed only 

once, during the initial training phase. To convert a new source 

utterance, we use Lasso [6] to compute the SABR weights (relative 

to the source’s anchors) and the corresponding residual (i.e., the 

reconstruction error). Next, for each frame in the source utterance, 

we compute a weighted warping function as the sum of each 

anchor’s warping function multiplied by its weight. In the final step, 

we estimate the spectrum of a target utterance by multiplying the 

source weights by the target anchors, and add the warped source 

residual using the warping function learned previously. We evaluate 

the performance of the method using objective (e.g. Mel cepstral 

distortion (MCD) and cepstral variance) and subjective (mean 

opinion scores, XAB preference tests) measures. Our results 

indicate that the addition of the warped residual greatly enhances the 

audio quality while still generating synthesized acoustics with the 

voice quality of the target speaker.  

The rest of this paper is organized as follows. First, we review 

prior VC methods that are most closely related to our approach. 

Then, we briefly describe the original SABR algorithm and derive 

the proposed residual-warping method. Next, we present results on 

subjective and objective experiments, using utterances from the 

ARCTIC database [7]. Finally, we discuss the implications of this 

method and provide directions for future work. 

2. PRIOR WORK 

A common way to perform VC is through statistical learning, most 

commonly Gaussian Mixture Models [3, 8]. These methods perform 

regression to map acoustic features (e.g., MFCCs) from source to 

target speaker, typically using parallel, time-aligned data. However, 

these methods can suffer from spectral over-smoothing and onerous 

data collection requirements.  

To improve the quality of GMM-based methods, Erro et al. [9] 

proposed frequency warping and amplitude scaling (FW+AS). For 

each mixture, a warping function and amplitude scaling vector was 

learned to map from the source to the target speaker. During 

conversion, instead of using the conditional probability of the GMM 

to estimate the target spectral envelope, the conditional probability 

was used to estimate a warping function and amplitude scaling of 

the source utterance.  Their method outperformed a baseline GMM 

in terms of decreased spectral distortion and higher preference 

ratings from listeners. Godoy et al. [1] presented a similar method, 

but removed the requirement for parallel utterances, instead building 

a phonemic GMM. For each phoneme class, the authors computed 

ideal frequency warping and amplitude scaling functions; however, 

the amplitude scaling was estimated from the residual of the warped 
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source and target acoustics. The authors found that listeners 

preferred their method to standard GMM regression, even though it 

led to higher spectral distortion than a traditional GMM-regression 

method. 

An alternative to GMMs has emerged in recent years [4, 10]. 

Known as exemplar-based voice conversion, these methods use 

nonnegative matrix factorization (NMF) to represent utterances as a 

linear combination of exemplars (i.e., short-time spectra) with an 

activation matrix. These methods require an initial pairing of source 

exemplars with target exemplars. Afterwards, for each new source 

utterance, these methods use NMF to compute an activation matrix 

(relative to the source exemplars) and then combine it with the 

corresponding target exemplars. Listening tests by Wu et al. [4] and 

Aihara et al. [10]  have shown a preference for exemplar-based 

methods over comparable GMMs. 

In subsequent work, Wu et al. [11] incorporated frequency 

warping into exemplar-based voice conversion. First, pairs of 

source-target exemplars are used to train warping functions and 

residual exemplars. Then, the activation matrix is used to compute a 

warping function that warps the source utterance to the target 

speaker, retaining the original spectral detail; a residual spectrogram 

computed from the activation matrix and residual exemplars, and 

then added to the warped source Listeners preferred the exemplar-

based warping method to a GMM-based warping method.  

Our proposed work differs from these prior methods in several 

respects. First, our exemplar set is significantly smaller since it is 

derived (one-to-one) from phonemic labels; because we use labels, 

the parallel constraint is also removed. Additionally, we do not 

compute residual exemplars, instead electing to warp the residual as 

opposed to the source utterance. Finally, since SABR anchors are 

tied to specific phonemes, the resulting SABR weights are 

interpretable.  

3. METHODS 

3.1. Sparse Anchor Based Representation (SABR) 

SABR represents an utterance as a sparse weighted sum of speaker-

dependent phonemic anchors [5]. These anchors are obtained in a 

semi-supervised manner (e.g., force-alignment) or through manual 

annotation. This modeling allows us to learn a speaker-independent 

representation for VC with minimal training data. For each speaker, 

we learn a phoneme anchor 𝐴𝑘 by choosing the centroid frame from 

all training samples with phoneme label 𝑘. For a given source 

utterance with 𝑁 acoustic features (e.g., MFCCs) and 𝑇 frames, 𝑋 ∈
ℛ𝑁×𝑇 and a source anchor set 𝐴𝑆 ∈ ℛ𝑁×𝐾 of 𝐾 phonemes, SABR 

approximates the utterance as a weighted sum of the anchors 𝑊 ∈
ℛ𝐾×𝑇: 

𝑋 ≅ 𝐴𝑆𝑊 (1) 

To solve for 𝑊, SABR uses the Least Angle Regression 

algorithm[12] to solve the LASSO [6] : 

𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑋 − 𝐴𝑊||
2
𝑠. 𝑡. |𝑊|1 ≤ 1,𝑊 ≥ 0 (2) 

The weight matrix 𝑊 can then be used to estimate a target speaker’s 

spectrum as: 

�̂� = 𝐴𝑇𝑊 (3) 

where 𝐴𝑇 ∈ ℛ𝑁𝑥𝐾 is a set of anchors from the target speaker.   

3.2. Residual warping in SABR voice conversion 

Eq. (1) can be viewed as an approximation to the original spectrum 

𝑋 that only captures phonological information, and ignores phonetic 

information in the utterance: 

𝑋 = 𝐴𝑆𝑊 +𝑅 (4) 

where 𝑅  is the residual signal, which contains spectral detail that is 

specific to the source speaker. As such, this residual cannot be added 

to eq. (3) without first transforming it into the target speaker’s space: 

�̂� = 𝐴𝑇𝑊+ 𝐹(𝑅) (5) 

where 𝐹(𝑅) is a residual mapping function. Helander et al. [13] 

proposed a kernel-based Partial Least Squares mapping of the 

residual, but they required parallel data. To remove this requirement, 

we instead use the weight matrix 𝑊 to estimate a mapping function 

for the residual. Our overall approach for mapping the two residuals 

is illustrated in Figure 1. 

Following Panchapagesan and Alwan [14], we use a piecewise 

linear warping function with two free parameters: an inflection point 

𝜔0 (normalized frequency), and a slope parameter 𝑝, which is the 

slope of the warping from 0 to 𝜔0: 

𝑓𝑝𝑤(𝜔;𝜔0, 𝑝) = {

𝑝𝜔,

𝑝𝜔0 + (
1 − 𝑝𝜔0

1 − 𝜔0

) (𝜔 −𝜔0),
0 ≤ 𝜔 ≤ 𝜔0

𝜔0 < 𝜔 ≤ 1
 (6) 

When using cepstral coefficients, the transform in eq. (6) can be 

expressed as a linear transform. Following [14], we compute this 

transform as a product of a Discrete Cosine Transform (DCT) matrix 

𝐶 and its warped inverse (IDCT) �̂�. Assuming 𝑀 filters in an MFCC 

filterbank, 𝑁 cepstral coefficients, and a warping function 𝑓(𝜔), 

matrices 𝐶 ∈ ℛ𝑁×𝑀 and �̂� ∈ ℛ𝑀×𝑁 can be computed as: 

𝐶𝑚,𝑘
𝑇 = [𝛼𝑘 cos(𝜋𝑘𝜔𝑚)] 1≤𝑚≤𝑀

0≤𝑘≤𝑁−1

 
(7) 

�̂�𝑚,𝑘 = [𝛼𝑘 cos(𝜋𝑘𝑓(𝜔𝑚))] 1≤𝑚≤𝑀
0≤𝑘≤𝑁−1

 
(8) 

where 𝛼𝑘 is a term to ensure that the DCT is unitary, and 𝜔𝑚 is the 

normalized frequency for the 𝑚th Mel filter. The linear warping of 

the MFCCs is 𝑇 = 𝐶�̂�, where 𝑇 ∈ ℛ𝑁×𝑁. Substituting 𝑓𝑝𝑤(∙) from 

eq. (6) into eq. (8), the transform becomes a function of 𝜔0 and 𝑝: 

𝑇(𝜔0, 𝑝) = 𝐶�̂�(𝜔0, 𝑝) (9) 

For each pair of source-target anchors 𝐴𝑆
𝑘 and 𝐴𝑇

𝑘 , we create a 

transform 𝑇𝑘 by selecting 𝜔0 and 𝑝 to minimize the SSE of the 

transformed source and target anchors: 

 

Figure 1: Overview of the proposed residual warping method.  
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𝑇𝑘 = argmin
𝑇(𝜔0,𝑝)

∑(𝑇(𝜔0, 𝑝)𝐴𝑆
𝑘 − 𝐴𝑇

𝑘)
2
 (10) 

Following [15], we constrain the inflection frequency 𝜔0 ∈
[0.4,0.8] and the warping slope 𝑝 ∈ [0.8,1.2]. The resulting residual 

warping VC method is similar to Weighted Frequency Warping 

[16].  

The final transform of the residual (i.e., 𝐹(𝑅) in eq. (5)) is the 

weighted sum of the individual anchor transforms 𝑇𝑘. We add a 

single row 𝑊𝑘+1 = 1 − ||𝑊1…𝑘||1 to ensure the weights sum to 1 

and set the corresponding warp 𝑇𝑘+1 = 𝐼. For each source frame 𝑋𝑖, 
SABR weight vector 𝑊𝑖, and the frame residual 𝑅𝑖, we estimate the 

target speaker’s spectrum �̂�𝑖 as:  

�̂�𝑖 = 𝐴𝑇𝑊𝑖 + (∑𝑊𝑖,𝑘𝑇𝑘

𝐾+1

𝑘=1

)𝑅𝑖 (11) 

Because of the sparsity imposed in eq. (2), the resulting residual 

transform matrix favors weights on or near the diagonal, a cepstral 

VTLN property noted by Pitz and Ney [15]. 

4. EXPERIMENTS 

4.1. Corpus 

For our experiments, we used data from the ARCTIC speech corpus 

[7] that includes phonetic transcriptions for each utterance. We used 

the four American English speakers in ARCTIC: BDL, CLB, RMS, 

and SLT. We used STRAIGHT [17] with default settings to extract 

aperiodicity, fundamental frequency and spectral envelope, then 

computed a 24-dimension MFCC vector (25 filterbanks, 24 

coefficients not including 𝑀𝐹𝐶𝐶0 (energy), 8 KHz cutoff) from the 

spectral envelope. We assign each acoustic frame a phonetic label 

based on the ARCTIC transcription. 

4.2. Voice conversion model design 

We evaluate the proposed method (SABR+Res) against two 

baseline systems: the original SABR method without residual 

compensation [5], and a baseline GMM conversion system [3]. We 

elected to not perform a more complex form of GMM-based VC 

(such as adding MLPG [8]) as these methods would not consistently 

converge with limited training data. To show that our approach does 

not require parallel training data, we built the source and target 

SABR models on mutually-exclusive sets of utterances from 

ARCTIC’s “A” set. Utterances were chosen in such a way as to 

maximize phoneme variability. GMM models were trained using the 

same utterances used to train the source SABR model and the time-

aligned parallel utterances of the target; thus, the GMM models had 

a slight advantage compared to SABR and SABR+Res. GMMs were 

set to 40 mixtures to have comparable complexity with SABR, and 

diagonal covariances. Following prior work [5], we perform log-

mean and variance scaling of the source F0 contour to match the 

range of the target F0. 

We examined a subset of speaker pairs—one for each gender 

conversion direction: M-M (BDL to RMS), F-F (SLT to CLB), 

M-F (BDL to CLB) and F-M (SLT to BDL); Following [5], for 

perceptual experiments we recruited listeners through Amazon’s 

online crowdsourcing tool Mechanical Turk. For comparability, we 

only perform objective evaluations on the same four speaker pairs. 

In all instances, we perform voice conversion on utterances in the 

“B” set of ARCTIC. 

4.3. Objective experiments 

4.3.1. Mel-Cepstral Distortion (MCD) 

In a first experiment, we measured the MCD of voice-converted 

utterances with that of time-aligned target data. For each pair of 

speakers and VC method, we trained the models using different 

amounts of training data, ranging from 5 to 100 utterances. Results 

are shown in Figure 2.  A slight uptick in the MCD can be seen in 

the SABR models as they transition from 15 to 20 utterances. This 

is due to the fact that SABR anchors are computed as centroids, and 

given small amounts of training data (roughly 40 seconds) the 

anchors can shift significantly. GMM models have lower MCD 

likely because they are trained on time-aligned source-target data, 

and the training procedure fits to the distribution of the data, not 

phoneme labels as in SABR. For the next experiments, we used the 

models trained using 10 utterances, as that was the number of 

utterances needed to consistently have intelligible audio quality. 

4.3.2. Mel-Cepstral Variance 

Following prior studies [8, 9], we examined the global variance of 

the MFCCs as a measure of acoustic quality, as MCD alone may not 

fully characterize the conversion quality. Figure 3 shows the global 

variance of each cepstral coefficient for the VC methods and the 

original ARCTIC utterances. SABR+Res approaches the global 

variance of the original utterances, besting SABR and GMM. The 

higher variance of each cepstral coefficient is indicative of better 

acoustic quality. 

4.4. Subjective evaluation 

4.4.1. Mean Opinion Score 

To evaluate acoustic quality, we used the standard 5-point mean 

opinion score (MOS; 1-bad, 5-excellent). We recruited 25 native 

English speakers and asked them to rate 60 utterances: 5 utterances 

for each VC pair and conversion method. We used 8 unmodified 

 
Figure 2: Average Mel-cepstral distortion of SABR, SABR+Res, and the 

difference between the source and target speakers. The slight increase in 

SABR MCD between 15 and 20 utterances is due to sensitivity in training. 
 

 
Figure 3: Average Mel-cepstral variance of SABR, SABR+Res, and 

original utterances. The SABR+Res VC utterances have global variances 

approaching that of the source utterances. 
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utterances to detect if participants were cheating, removing them if 

so [18]. Utterances were randomly ordered. Results are shown in 

Figure 4. Listeners consistently rated SABR+Res as being superior 

to either SABR or GMM (𝑝 < 0.01 in both cases). 

4.4.2. XAB Preference Test 

In a final experiment, we used an XAB test to measure the speaker 

individuality. Namely, we recruited 24 participants to listen to an 

utterance X generated using VC as well as two other utterances A 

and B from the source and target speakers, and then asked if A or B 

was closer to X in terms of speaker identity. For each VC pair and 

conversion method, we generated 10 utterances and paired them 

with different utterances from the source and target speakers. 

Results are shown in Figure 5. Listeners rated SABR and 

SABR+Res the same accuracy as the GMM method (𝑝 = 0.70, 𝑝 =
0.35); same-gender conversion was slightly reduced in some cases. 

5. DISCUSSION 

Our experiments show that SABR+Res can dramatically improve 

VC quality compared to SABR synthesis. Adding the warped 

residual improves MOS significantly (from 2.2 to 3.5, 𝑝 < 0.01 ), 
in agreement with prior studies that use residuals and frequency 

warping [1, 9, 19]. Moreover, adding the warped residual increases 

the cepstral variance of the synthesized utterances, bringing it close 

to that of the original utterances (see Figure 3). Though the MCD 

increases when the warped residual is added to the SABR voice 

conversion, we note that the increased distortion (0.12 dB) is smaller 

than the average magnitude of the residual (1.7 dB), suggesting that 

residual warping adds a significant amount of “correct” detail. The 

MCD of GMM VC is lower than SABR likely because of the GMM 

is fitted to time-aligned source-target data, something SABR does 

not use. Samples of SABR and SABR+Res spectral envelopes 

compared with target speech can be seen in Figure 6. 

On average, adding the warped residual to the original SABR 

utterance did not affect the ability for listeners to correctly identify 

the target speaker, compared with SABR (𝑝 = 0.35) or GMM-based 

methods (𝑝 = 0.70). Identification rates compared favorably with 

prior warping literature ([1, 9, 11, 16]). Same-gender SABR+Res 

conversions had lower performance than cross-gender conversions, 

and we suggest two explanations: first, pitch range is a strong cue to 

speaker identity in cross-gender conversion, so listeners may focus 

on pitch differences during identification, making the cross-gender 

task easier. Second, the warped residual may still retain some of the 

source speaker identity. This explanation shows predominantly in 

the F-F conversion, as the two female speakers had very similar 

voices prior to conversion. If the residual still retained some of the 

source identity, it could cause confusion between two already-

similar speakers1. 

6. CONCLUSION AND FUTURE WORK 

We presented a modification to SABR that significantly improves 

synthesis quality for VC in scenarios where training data is limited. 

This improvement requires no additional parameters to the original 

SABR model [5], so the approach remains highly interpretable. 

Using frequency warping functions learned from source and target 

anchors, we warped the source residual to the target speaker’s space, 

                                                                 

 
1 Audio samples of SABR, SABR+Res, and GMM VC are available at 
http://people.tamu.edu/~cliberatore/samples/sabr.icassp2018.html   

and added it to the estimated target speaker’s spectrum. Through 

subjective and objective experiments, we found the overall synthesis 

quality improved dramatically while retaining the ability to capture 

the voice quality of the target speaker. The resulting synthesis also 

compares favorably with a GMM-based conversion method, but 

does not require parallel data.  

Currently, SABR anchors are built from phoneme centroids. As 

we reported previously [5, 20], SABR weights show less stability in 

turbulent and non-continuant segments. Thus, future developments 

will focus on modifying SABR to handle temporal anchors (e.g. 

using Tibshirani’s Fused LASSO [21]). Additionally, increasing the 

number of anchors by taking into account allophones may improve 

the performance of SABR, even in extremely limited data 

conditions. 
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Figure 4: MOS comparison for GMM, SABR, and SABR+Res. Shown is 
the average performance of conversion for each possible conversion 

direction, and an aggregation over all directions. 

 

 
Figure 5: XAB identification rate for GMM, SABR, and SABR+Res VC 

methods. In all conditions except F-F, SABR+Res performed at least as well 

as the GMM condition.  In the F-F case, the two speakers had a similar 

identity before conversion, making identifying them after conversion more 
difficult. 

 

 
Figure 6: single frame comparison between SABR, SABR+Res, and 

target spectral envelopes. SABR+Res has substantially more detail in the 

spectrum as opposed to the original SABR spectrogram. The angular features 

in the latter half of the envelopes are from MFCC compression. 
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