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ABSTRACT
Probabilistic linear discriminant analysis (PLDA) is a state-of-art
back-end for i-vector based speaker verification. However, this back-
end is still problematic when (1) the model is deployed to new envi-
ronment (in-domain) that is very different from the training one (out-
of-domain) and (2) there are insufficient labeled data from the new
environment. To address these problems, this paper proposes us-
ing out-of-domain training data to pre-train a PLDA mixture model
and applying the mixture model on the in-domain training data to
compute a pairwise score matrix for spectral clustering. The hypoth-
esized speaker labels produced by spectral clustering are then used
for re-training the mixture model to fit the new environment. To
refine the mixture model, the spectral clustering and re-training pro-
cesses are repeated a number of times. To make the mixture model
amenable to both genders, a deep neural network (DNN) is trained
to produce gender posteriors given an i-vector. The gender posteri-
ors then replace the posterior probabilities of the indicator variables
in the PLDA mixture model. Evaluations based on NIST 2016 SRE
suggest that at the end of the iterative re-training, the PLDA mix-
ture model becomes fully adapted to the new domain. Results also
show that the PLDA scores can be readily incorporated into spectral
clustering, resulting in high quality speaker clusters that could not
be possibly achieved by agglomerative hierarchical clustering.

Index Terms— I-vectors; DNN-driven mixture of PLDA; spec-
tral clustering; domain adaptation; speaker verification

1. INTRODUCTION

I-vectors [1] have been regarded as the best feature representation for
speaker verification. To achieve good performance, a robust back-
end that can minimize the effect of the unwanted variabilities in i-
vectors is essential. So far, probabilistic linear discriminant analysis
(PLDA) [2] is still the best back-end for this purpose. Given the
i-vectors of a target speaker and a claimant, the likelihood ratio be-
tween the same-speaker hypothesis and different-speaker hypothesis
is computed from a PLDA model. During the computation of the
marginal likelihood of these two hypotheses, the unwanted variabil-
ities in the i-vectors are marginalized out.

Despite its remarkable performance, PLDA models require a
large amount of speech data with speaker labels for training. In
particular, to model the speaker subspace reliably, each speaker in
the training set should have multiple sessions, preferably collected
by different microphones. Most of the current speech corpora (e.g.,
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Switchboard, Fisher, and Mixer) focus on English telephone speech.
Therefore, training a reliable PLDA model for English telephone
speech is not an issue. However, other languages or acoustic en-
vironments may not have such rich resources. Even if we have the
speech data of other languages, we may not have the speaker labels.
The NIST 2016 SRE [3] has exactly such situation. In this eval-
uation, participants were given unlabeled speech data for training
whatever models for suppressing the channel, language and gender
variabilities.

As training of a PLDA model requires speaker labels, one sensi-
ble approach is to apply unsupervised clustering on the i-vectors de-
rived from the in-domain data to produce some hypothesized speaker
labels. Agglomerative hierarchical clustering [4] can be used for
such purpose. Alternatively, spectral clustering [5–7], which utilizes
the eigenvectors of a similarity matrix, can be used. The similarity
matrix can be derived from the pairwise PLDA scores of in-domain
i-vectors.

Beside speaker information, genders and languages are another
two crucial characteristics of human voice. Male and female possess
different vocal-tract structures, which induce different voice charac-
teristics for the two genders [8]. If gender information is not avail-
able during scoring, a gender classifier can be used as a front-end for
the gender-dependent systems. Again, i-vectors can be used as the
features of this classifier because they contain gender information. A
better approach is to jointly train the gender-dependent PLDA mod-
els using the data from both genders. This leads to a gender-aware
PLDA mixture model, which is the key contribution of this paper.

Speaker verification systems also need to deal with language
mismatch. In particular, a system trained on one language (e.g. En-
glish) will have difficulty in distinguishing speakers speaking an-
other language (e.g. Mandarin). To suppress the effect of language
differences on i-vectors, an approach called inter dataset variabil-
ity compensation (IDVC) [9–11] can be used to estimate the nui-
sance subspace and remove the subspace from all i-vectors. To apply
IDVC, we may separate the training dataset into disparate groups ac-
cording to genders and languages and compute the mean i-vector of
each group. A low-dimension subspace is then obtained by applying
principle component analysis (PCA) on the means. The variabil-
ity caused by gender and language differences is then projected out
based on this low-dimensional subspace.

In light of the promise of spectral clustering and mixture of
PLDA [12, 13], this paper proposes a novel method for adapting a
gender-aware PLDA mixture model to a new domain using a small
amount of unlabelled data in the new domain. The key idea is to in-
corporate the pairwise PLDA scores produced by an initial mixture
model into the spectral clustering process so that the resulting hy-
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pothesized speaker labels can be used for iteratively refining the mix-
ture model. The method was evaluated on the NIST 2016 Speaker
Recognition Evaluation corpus (SRE16-eval) using its development
set (SRE16-dev) as the unlabelled data for domain adaptation. Sur-
prisingly, it was found that only the SRE16-dev data are enough for
this iterative refinement process to achieve good performance. By
analyzing the Silhouette values of the clusters produced by spectral
clustering (SC) and agglomerative hierarchical clustering (AHC), we
found that SC is much better than AHC for hypothesizing the speaker
labels. In particular, SC not only provides an efficient way of using
the PLDA scores for speaker clustering, it also produces consistent
clusters as compared to AHC.

2. BACKGROUND

2.1. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering (AHC) is a bottom-up cluster-
ing algorithm. Given a collection of data points, the AHC algorithm
starts by considering each data point in a dataset as a cluster. Then,
at each step, it finds a pair of clusters that are closest to each other
and merges the two clusters to form a bigger one. The process is re-
peated until there is only one cluster remains. AHC is a popular ap-
proach to hypothesizing the speaker labels of in-domain datasets for
unsupervised domain adaptation. For example, Garcia-Romero [14]
proposed using the scores derived from an out-of-domain PLDA
model as the similarity metric and merging two clusters if their av-
erage pairwise score is larger than a threshold. The merging pro-
cess stops when the evidence in favour of the same-speaker hypoth-
esis is higher than that of the different-speaker hypothesis. The hy-
pothesized speaker labels are then used for estimating the covari-
ance matrices of an in-domain PLDA model, which are then inter-
polated with the covariance matrices of the out-of-domain PLDA
model [15]. Alternatively, Torres-Carrasquillo et al. [16] suggested
using AHC to cluster the unlabeled data in the SRE16-dev and ap-
plied the hypothesized speaker labels for supervised domain adapta-
tion similar to [15].

2.2. Silhouette Values

In cluster analysis, silhouette values are measures that quantify the
coherence of data within a cluster. It was first introduced by Rousseeuw
[17] as a graphical tool for interpreting and validating clusters in
cluster analysis. Using the notations in silhouette’s literature, we
denote a(i) as the average dissimilarity (distance) of sample i with
respect to all other samples within the same cluster. Also, we de-
note b(i) as the lowest average dissimilarity of sample i with respect
to any other cluster not containing i. Then, the silhouette value of
sample i is given by

s(i) =
b(i)− a(i)

max{a(i), b(i)} . (1)

Obviously, s(i) ranges from −1 to +1. A value of +1 means that
the corresponding data sample is well matched to its own cluster and
is poorly matched to its rival cluster. On the other hand, a value
of −1 means that the data sample is assigned to the wrong cluster.
To ensure proper clustering of data, we strive for having positive
silhouette values for all data samples or having an average silhouette
value close to +1.

The silhouette values depend on the similarity/dissimilarity met-
rics. In speaker clustering, these metrics can be derived from the

Euclidean distances, cosine distances, and PLDA scores (see Sec-
tion 3.1) between pairs of i-vectors. For example, in [18], silhouette
values based on the Euclidean distance between i-vectors were used
for determining which clusters should be merged during the speaker
clustering process.

3. PROPOSED FRAMEWORK

3.1. Hypothesized Speaker Labels

In the proposed domain adaptation method, spectral clustering is the
key step for hypothesizing the speaker labels in the in-domain data
for iterative retraining of the PLDA mixture model. To perform spec-
tral clustering, a similarity matrix comprising the similarity scores
between each pair of the training i-vectors is needed. The similar-
ity matrix can be obtained from the PLDA scores of training utter-
ances. As PLDA scores are log-likelihood ratios, they can be neg-
ative. Therefore, we need to convert the PLDA scores to similarity
scores that are amenable to spectral clustering.

Given a dataset X = {x1, . . . ,xn} comprising n i-vectors, we
compute a PLDA score matrix S ∈ <n×n, where the element sij of
S is the score of xi and xj based on a PLDA mixture model [12]:

sij = SmPLDA(xi,xj).

Then, we convert S to a distance matrix M with elements:

mij =

{
samax − sij i 6= j

0 otherwise,
(2)

where
samax = max

i,j; i6=j
|sij |. (3)

Then, we convert the distance matrix M to a similarity matrix A that
is suitable for spectral clustering. Specifically, the element of A is

aij = exp
{
−
m2

ij

2σ2

}
, (4)

where σ is a scaling parameter that controls how fast the similarity
drops with the distance mij . The similarity of two i-vectors reflects
the “distance” or difference between the two utterances. A negative
sij means that the two i-vectors are very dissimilar, which results in
a large mij in Eq. 2 and small aij in Eq. 4. On the other hand, a
large sij means that the two i-vectors are very similar, which results
in mij ≈ 0 and aij → 1.

With the simiarlity matrix A, we may divide X into K clusters
as follows. First, we compute the Laplacian matrix

L = I−D−
1
2 AD−

1
2 ,

where I is an n × n identity matrix, D is a diagonal matrix with
diagonal elements dii =

∑n
j=1 aij , and D−

1
2 stands for the in-

verse of the square root of D. Then, we compute theK eigenvectors
{v1, . . . ,vK} of L with the smallest eigenvalues and pack the K
eigenvectors to form a matrix V = [v1, . . . ,vK ] ∈ <n×K , fol-
lowed by re-normalization of the rows:

vij ←
vij√∑

j v
2
ij

. (5)

Then, we consider the rows of the normalized V as K-dimensional
vectors and the n row vectors can be clustered by K-means to form
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K clusters. The row vectors and their corresponding utterances in
the c-th cluster (c = 1, . . . ,K) are considered to be associated with
the c-th hypothesized speaker.

3.2. Gender and Language Mismatch Compensation

To suppress the effect of gender and language mismatch in the i-
vectors, we applied inter-dataset variability compensation (IDVC)
[11]. IDVC aims to find a low-dimensional subspace that is sensitive
to the mismatches and remove this subspace from both the develop-
ment and evaluation i-vectors. To this end, we partitioned SRE16-
dev into 4 subsets (two per gender).1 Principal component analy-
sis was then applied to the mean i-vectors of these subsets to find
the first 3 eigenvectors {ur}3r=1 with the largest eigenvalues. All i-
vectors were than projected by the transformation matrix (I−UUT),
where U = [u1,u2,u3].

3.3. DNN-Driven PLDA Mixture Model

While IDVC is capable of projecting out the gender variability in
i-vectors, using only the mean i-vectors to estimate the nuisance di-
rections is rather crude in that other statistical properties of i-vectors
are simply ignored. We propose using a DNN-driven PLDA mix-
ture model [12] to model the remaining gender information in the i-
vectors. Because there are only two genders, the number of mixtures
was set to 2. During the training phase, the gender (mixture) poste-
riors are provided by a gender-aware DNN that receives i-vectors as
input and the hypothesized speaker labels are provided by spectral
clustering. Fig. 1 shows the block diagram of the training process.

As shown in Fig. 1, at the beginning of training, we need a PLDA
mixture model to compute the first set of pairwise scores for spectral
clustering. This can be accomplished by using SRE05–SRE12 data
(with real speaker labels) to train an initial PLDA mixture model.
Once we have the first set of hypothesized speaker labels, the mixture
model can be retrained by using the gender posteriors and IDVC-
compensated vectors, and the process can be repeated for a num-
ber of iterations. The EM algorithm for training the PLDA mixture
model can be found in [12]. Note that while the mixture model is
gender-aware, the two mixture components are gender-dependent.
Therefore, each component has its own mean vector mk, speaker
subspace Vk and residue covariance matrix Σk, i.e., the mixture
model is parameterised by θ = {mk,Vk,Σk}2k=1. Note also that
the SRE05–SRE12 data are only used for initializing the mixture
model; during the iterative training process, only the SRE16-dev
data are used. Therefore, the training process is efficient.

Gender-aware	
DNN	

Training	of		
PLDA	Mixture		

Model	

IDVC		Spectral	
Clustering	

Unlabeled	SRE16-Dev	I-Vectors	

Hypothesized	
Speaker	Labels	

Whitening	
Len-norm	
LDA-WCCN	

IDVC-compensated	
I-Vectors	

mPLDA	
model	

Compute	
Pairwise	

PLDA	Scores	

Final	Model	

Gender	
Posteriors	

Fig. 1. Iterative retraining of the gender-aware PLDA mixture model

1As there is no language label except for the type “major” and “minor” in
the directory structure, each gender can only be divided into two groups.

After the iterative training process, the PLDA mixture model
is ready for scoring. Given the i-vectors of a target-speaker and a
claimant, their gender posteriors are computed by the gender-aware
DNN. The i-vectors are subject to IDVC, followed by i-vector pre-
processing (whitening + len-norm + LDA-WCCN) [19, 20] before
presenting to the mixture model to compute the PLDA score. The
scoring formula can be found in [12]. In this work, we applied
WCCN transformation to whiten the i-vectors [21].

4. EXPERIMENTS
4.1. Evaluation Protocol and Speech Data

Evaluations were performed on the evaluation set of NIST 2016 SRE
(SRE16-eval) [3]. Data from the development set of SRE16 (SRE16-
dev) and from SRE05–SRE12 were used for development. The data
were divided into the following parts:

• Enrollment and Test Data: SRE16-dev has 120 enrollment seg-
ments, each with approximately 60s. It also contains 1,207 test
segments with duration ranging from 10s to 60s. All segments
contain telephone conversations spoken by 20 subjects in either
Mandarin or Cebuano. Each target speaker has one or three en-
rollment segments. The evaluation protocol in SRE16-dev de-
fines which target-speaker models should score against which
test segments, with a total of 4,829 target trials and 19,312 non-
target trials. SRE16-eval has the same structure as SRE16-dev,
excepting that the numbers of enrollment segments and test seg-
ments increase to 1202 and 9,294, respectively. The number of
subjects also increases to 201. The evaluation protocol defines
37,063 target trials and 1,949,666 non-target trials. Also, unlike
SRE16-dev, all enrollment and test segments in SRE16-eval were
spoken in either Cantonese or Tagalog, which causes language
mismatch for systems trained on SRE16-dev data.

• Development Data: Telephone segments from SRE05–SRE12
were used for training the gender-aware DNN and the initial
PLDA mixture model in Fig. 1. The unlabelled data in SRE16-
dev, including the major and minor languages, were used for
training the subspace projection matrices (LDA and WCCN),
a 512-mixture UBM, and a 300-factor total variability matrix.
They were also used for the iterative retraining of the PLDA mix-
ture model in Fig. 1.
For each speech segment, a 2-channel voice activity detector

[22] was applied to remove silence regions. Then, the speech regions
were segmented into 25-ms Hamming windowed frames with 10ms
frame shift. For each frame, 19 Mel frequency cepstral coefficients
and log energy together with their first and second derivatives are
packed to form a 60-dimensional acoustic vector, followed by cep-
stral mean normalization and feature warping [23] with a window
size of 3 seconds.

4.2. Training of Gender-Aware DNN

The DNN was constructed by stacking a number of restricted Boltz-
mann machines (RBMs) [24], which were initialized layer-wise by
the contrastive divergency algorithm [25]. After that, a softmax layer
was placed on top of the network to ensure that the network can
produce gender posteriors. Then, backpropagation was applied to
minimize the cross-entropy between desired and actual outputs. In
this work, we used the utterances in SRE05–SRE12 and their gender
labels to train the gender-aware DNN.

4.3. Score Normalization

As suggested by [26], adaptive score normalization can improve the
performance of i-vector/PLDA systems on NIST 2016 SRE signifi-
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cantly. To reduce scoring time, we applied adaptive z-norm instead
of the more computationally demanding adaptive s-norm as a com-
promise. Specifically, we used the unlabelled utterances in SRE16-
dev as the candidate cohorts for the enrollment utterances. For each
enrollment utterance, its PLDA scores with respect to the unlabelled
i-vectors in SRE16-dev were computed and ranked; then, the top-
200 i-vectors were selected as the cohort set for computing the z-
norm parameters of the utterance.

5. RESULTS AND DISCUSSIONS

To compare the quality of the i-vector clusters produced by agglom-
erative hierarchical clustering (AHC) and iterative spectral clustering
(Iterative-SC), we computed the silhouette values from the clusters
produced by these two methods and displayed them as silhouette
plots in Fig. 2. As AHC can use Euclidean or cosine distance as
its distance metric, we refer to the resulting methods as Euclidean-
AHC and Cosine-AHC, respectively. Fig. 2 shows that Iterative-SC
has the highest average silhouette score and has less negative silhou-
ette values. This suggests that Iterative-SC produces clusters with
better quality.
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Fig. 2. Silhouette plots showing the quality of i-vector clusters pro-
duced by (a) Euclidean-AHC, (b) Cosine-AHC and (c) Iterative SC.
Each silhouette pattern represents a cluster, and the silhouette values
of individual samples are shown on the horizontal axis.

We used equal error rate (EER) and minimum decision cost
function (minDCF) defined in NIST 2016 SRE to evaluate the per-
formance of different systems. Unless stated otherwise, the number
of clusters (hypothesized speakers) is 180.

SRE16-Dev SRE16-Eval
Iteration EER(%) minDCF EER(%) minDCF

1 17.12 0.812 18.72 0.952
2 16.31 0.789 15.32 0.883
3 15.79 0.751 13.62 0.829
4 15.68 0.774 12.79 0.798
5 15.04 0.799 12.73 0.779
6 15.74 0.782 13.03 0.792
7 15.79 0.788 13.34 0.801

Table 1. Performance of the iterative retraining method in Fig. 1 for
different numbers of iterations on SRE16-dev and SRE16-dev.

Table 1 shows that the performance generally improves after a
few iterations on both datasets. Because of the mismatch between
pre-SRE16 and SRE16 data, the performance in the first iteration is
the worst. However, when the number of iterations increases, the
PLDA mixture model gradually adapts to the new domain and both

the EER and minDCF drop. We observed that increasing the num-
ber of iterations beyond 7 does not bring any further peformance
improvement.

In the next experiment, we compared different speaker cluster-
ing methods and used AHC as the baseline. Also, we used co-
variance matrix interpolation [14–16] as the baseline for domain
adaptation. Specifically, we interpolated the covariance matrices of
the in-domain PLDA mixture model with the covariance matrices
of the out-of-domain PLDA mixture model using an interpolation
weight of 0.5. Table 2 shows the speaker verification performance
using the 3 speaker clustering methods. Note that iterative retrain-
ing (Fig. 1) is meaningful to Iterative-SC only because the distance
metrics of AHC is independent of the PLDA model. Results show
that iterative-SC together with the retraining strategy can leverage
the limited amount of unlabelled in-domain data to achieves supe-
rior performance. Rows 2 and 3 in Table 2 suggest that without
iterative re-training, covariance interpolation helps to lower the EER
and minDCF. However, when iterative re-training is applied (Row 4
and Row 5), the benefit of covariance interpolation diminishes.

Row
Clustering Cov. SRE16-Dev SRE16-Eval

Method Interp. EER (%) minDCF EER (%) minDCF

1 Euclid-AHC N 19.54 0.937 18.68 0.932
2

Cosine-AHC
N 18.23 0.862 16.37 0.846

3 Y 16.36 0.818 14.12 0.832
4

Iterative-SC
N 15.04 0.799 12.73 0.779

5 Y 15.21 0.809 12.60 0.816

Table 2. Performance of PLDA mixture models on SRE16 using dif-
ferent speaker clustering methods and with and without covariance
matrix interpolation (Cov. Interp.).

In the covariance interpolation method [14–16], the out-of-domain
data have a direct influence on the adapted model and the degree of
influence is controlled by an interpolation weight. The problem is
that this weight should be set according some prior knowledge about
the two domains, which may not be easily quantified. In our method,
however, such influence will be progressively diminished during the
iterative training process. As shown in Table 1, the PLDA model can
be fully adapted to the new domain after 5 iterations.

6. CONCLUSIONS

This paper demonstrates the capability of an iterative training proce-
dure that leverages spectral clustering, inter-dataset variability com-
pensation (IDVC), mixture of PLDA and DNNs for gender-aware
speaker verification. Evaluations on NIST 2016 SRE reveal that
spectral clustering outperforms traditional clustering methods such
as agglomerative hierarchical clustering because the PLDA scoring
intrinsically requires i-vector pairs, which can be easily incorporated
into the similarity matrix of spectral clustering. Results also show
that despite the limited amount of development data and the unavail-
ability of speaker and gender labels in the development data, the
proposed method can achieve superior performance. A number of
factors contribute to this superior performance. Firstly, the IDVC
helps to reduce the gender and language mismatch in the develop-
ment data of NIST 2016 SRE. Secondly, spectral clustering can ef-
fectively find the hypothesized speaker labels for training the PLDA
mixture model. Thirdly, the gender-aware DNN provides the gender
posteriors for the PLDA mixture model to capture whatever gender
information remains in the IDVC-compensated i-vectors.
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